
Time Series Project

Liam Flaherty

October 14, 2024

CONTENTS Flaherty, 2

Contents

1 Introduction 3

2 Model Selection 4
2.1 White Noise Test . 4
2.2 (Weak) Stationarity Test . 4
2.3 Autocorrelation And Partial Autocorrelation Functions 5
2.4 Seasonality . 6
2.5 Suggested Models . 7
2.6 Model Diagnostics . 8

3 Parameter Selection 9
3.1 Heart Rate Data . 9
3.2 Weight Data . 10

4 Forecasting 11

5 Appendix 12

2

Flaherty, 3

1 Introduction

In 2022, I had a small surgery on my back that kept me pretty immobile for months on
end. Once I was able to start moving normally again, my strength and endurance were both
fractions of what they were prior to undergoing the procedure.

To build back my health, I started running and lifting weights. Progress could be judged
by direct measurement (e.g. how far I could run or how much weight I could lift), but
hopefully, changes in these direct measurements would also manifest themselves in proxy
measurements (e.g. an increase in strength would lead to an increase in muscle mass and
thus body weight, while an increase in endurance would lead to better cardiovascular health).

To that end, I made it a goal to increase my body weight at a constraint of a steady
resting heart rate. With a few exceptions, I recorded progress in these areas each morning
from August 2022 to March 2023 by using a blood pressure and heart rate gauge I bought
from CVS and a bathroom scale. We reserve the data post February 2023 as the test set,
and plot the training set in Figures 1.1-1.2 below.

Figure 1.1: Evolution Of Heart Rate

Figure 1.2: Evolution Of Weight

3

Flaherty, 4

2 Model Selection

2.1 White Noise Test

It is clear from inspection that the time series for weight is not white noise. We use the
Ljung-Box Q Test to determine whether we need to fit a model for the heart rate data. The
function Box.test() in R provides a nice way to look at this. Upon running this function
on our data, we get the below output in Figure 2.1. With a p-value of about 0.004, we fail
to reject the null hypothesis of “not white noise” under a significance level of α = 0.05.

Figure 2.1: R Output For Ljung-Box Q Test

2.2 (Weak) Stationarity Test

We can test whether or not we need to take a difference in either dataset in order to
make the data stationary (test if there is a unit root) with the Augmented Dickey-Fuller
Test. At least visually, it appears there is trending in the weight dataset, but constant mean
in the heart rate dataset. This is borne out by a formal test of the data, which we show in
Figures 2.2-2.3 below. Note that there is not enough evidence to reject the null hypothesis
of “non-stationary” for the weight data under a significance level of α = 0.05.

Figure 2.2: ADF Output For Weight Figure 2.3: ADF Output For Heart Rate

Indeed, after taking a difference (Figure 2.4), we see the time series appears significantly
more stationary than previously (Figure 1.2).

Figure 2.4: Time Series After Difference

4

2.3 Autocorrelation And Partial Autocorrelation Functions Flaherty, 5

2.3 Autocorrelation And Partial Autocorrelation Functions

The autocorrelation and partial autocorrelation for our heart rate data (Figure 2.5) and
weight data (Figure 2.6) are shown below.

Figure 2.5: ACF And PACF For Heart Rate

Figure 2.6: ACF And PACF For Weight

As expected, the ACF for the weight data refuses to die out; the data is heavily correlated.
After taking a difference, we see the P/ACF plots in Figure 2.7 below.

Figure 2.7: ACF And PACF For Differenced Data

5

2.4 Seasonality Flaherty, 6

2.4 Seasonality

Notice that the ACF for the differenced data in Figure 2.7 above has spikes at lags of
7, 14, and 21 (the seasonal lags are highlighted in green). This indicates that we might try
fitting a seasonal component to the data. There is a physical explanation for this seasonality
as well– I didn’t run on Sunday’s and often ate out on the weekend.

To account for this seasonality, we can try to fit a SARIMA with s = 7. Since the spikes
in the ACF are not growing, we may not need to take a seasonal difference. Nevertheless, we
try taking one and see how the P/ACF plots look. They are shown in Figure 2.8 below.

Figure 2.8: ACF And PACF Of Seasonally Differenced Weight Data

There are still some large spikes in the PACF well out into the data, so taking just a
seasonal difference may not be sufficient. When taking both a seasonal difference (D = 1)
and then a regular difference (d = 1), we get the plots for our P/ACF in Figure 2.9.

Figure 2.9: ACF And PACF Of Seasonally And Regularly Differenced Weight

6

2.5 Suggested Models Flaherty, 7

2.5 Suggested Models

From Subsection 2.4, there is no clear answer as to which differencing combination (the
d and D terms) is best to deal with the weight data.

Based on the ACF and PACF from the regularly differenced data (d = 1) from Figure 2.7,
we see the seasonal lags of the ACF gradually die out, while the seasonal lags of the PACF
have a spike at lag 2 (so, an ARIMA(2,0,0) or ARIMA(2,0,3) for the seasonal component
might make sense). The regular lags in the ACF do not completely die out with spikes well out
into the series, though the last large spike is at lag 1. The regular lags in the PACF gradually
die out, despite having a large spike at lag 6 (so, an ARIMA(0,1,1) for the regular component
might make sense). This first bit of our recommended models are ARIMA(0,1,1)(2,0,0)7 and
ARIMA(0,1,1)(2,0,3)7.

Based on the ACF and PACF from the seasonally differenced data (D = 1) from Figure
2.8, we see the seasonal lags in the ACF die out after a large first spike, while the seasonal
lags of the PACF immediately dissipate (so, an ARIMA(0,1,1) or ARIMA(0,1,0) for the
seasonal component might make sense). The regular lags in the ACF have meaningful spikes
at lags 1 and 2 before having a sinusoidal decay. The regular lags in the PACF do not really
die off (so, an ARIMA(0,0,1) or ARIMA(0,0,2) or ARIMA(0,0,3) for the regular component
might make sense). The second bit of our recommended models are ARIMA(0,0,1)(0,1,1)7,
ARIMA(0,0,1)(0,1,0)7, ARIMA(0,0,2)(0,1,1)7, and ARIMA(0,0,2)(0,1,0)7.

Based on the ACF and PACF from the data that is both seasonally differenced and reg-
ularly differenced (d = 1, D = 1), we see one large spike in the seasonal lag of the ACF and
one large spike in the seasonal lag of the PACF (so, an ARIMA(1,1,0) or ARIMA(0,1,1)
or ARIMA(1,1,1) for the seasonal component might make sense). The regular lags in
the ACF and PACF do not really die off, but maybe an ARIMA(1,1,0) or ARIMA(0,1,1)
or ARIMA(1,1,1) could work. The third and final bit of our recommended models are
ARIMA(1,1,1)(1,1,0)7, ARIMA(1,1,1)(0,1,1)7, ARIMA(1,1,1)(1,1,1)7, ARIMA(0,1,1)(1,1,0)7,
ARIMA(0,1,1)(0,1,1)7, ARIMA(0,1,1)(1,1,1)7, ARIMA(1,1,0)(1,1,0)7, ARIMA(1,1,0)(0,1,1)7,
and ARIMA(1,1,0)(1,1,1)7.

The heart rate data is much simpler. Based on the ACF and PACF for the Heart Rate
Data in Figure 2.5, we suggest an MA(1). This is because the last spike in the ACF is at lag
one, and the PACF shows a gradual sinusoidal decay.

7

2.6 Model Diagnostics Flaherty, 8

2.6 Model Diagnostics

We prioritize the models we identified in subsection 2.5, but we also have lots of compu-
tational power to try many different models.

We utilize this power by trying all seasonal ARIMA models with p, q, P, and Q terms less
than 5 and d and D terms less than 2. For each of the 54×2×2 = 2500 models, we compute
the AIC and BIC for model evaluation, and the p-value from the Ljung-Box Q test to see if
the residuals from our model are actually white noise. The top 15 models in terms of BIC
are shown in Figure 2.10 below.

Figure 2.10: ARIMA Model Diagnostics

See that our recommended ARIMA(0,1,1)(0,1,1) had the best BIC. Also notice that all
the top models had both a seasonal and regular difference. We finally note that in terms
of AIC, the ARIMA(0,1,1)(0,1,1) was also a top performer, and only models with much
more terms (e.g. ARIMA(2,1,1)(1,1,4)7), bested it by that metric. Since we are using the
models for prediction, we prefer parsimony and so base our decision on the metric that is less
forgiving to added parameters; our model choice is the ARIMA(0,1,1)(0,1,1)7.

The heart rate data was stationary to begin with; we only need to consider ARMAmodels.
The top model in terms of BIC (of all combinations of p and q less than 5) was an AR(1),
though our suggested MA(1) was not far behind. The top ten models are shown in Figure
2.11 below.

Figure 2.11: ARIMA Model Diagnostics

8

Flaherty, 9

3 Parameter Selection

3.1 Heart Rate Data

We fit both series with two models each using the forecast package from R. In choosing
the coefficients, we are selecting those parameter values which minimize the mean square
error.

For the heart rate data, the top performing model is an AR(1). Our model is (where
at ∼ N(0, 20.16)):

at = π(B)Z̃t (3.1)

at ≈ (1− 0.3086B)(Zt − 57.3851) (3.2)

Zt ≈ 57.3851 + 0.3086(Zt−1 − 57.3851) + at (3.3)

Figure 3.1: R Code For Heart Rate Model Coefficients

Our suggested model was an MA(1). The model fit is (where at ∼ N(0, 20.34)):

Z̃t = ψ(B)at (3.4)

(Zt − 57.3906) ≈ (1 + 0.2283B)at (3.5)

Zt ≈ 57.3906 + at + 0.2283at−1 (3.6)

Figure 3.2: R Code For Heart Rate Model Coefficients

9

3.2 Weight Data Flaherty, 10

3.2 Weight Data

We give the coefficients to the Seasonal ARIMA models that we fit for the weight data
below. The best model in terms of BIC was our suggested SARIMA(0,1,1)(0,1,1). Our model
is (where at ∼ N(0, 1.268)):

π(B)Π(Bs)(1−B)d(1−Bs)DZt = ψ(B)Ψ(Bs)at (3.7)

(1−B)(1−B7)Zt ≈ (1− 0.6659B)(1− 0.8147B7)at (3.8)

Zt ≈ Zt−1 + Zt−7 − Zt−8 + at − 0.6659at−1 − 0.8147at−7 + 0.5425at−8 (3.9)

Figure 3.3: R Code For Weight Data Model Coefficients

The best model in terms of AIC was a SARIMA(2,1,1)(1,1,4). Our model is (where
at ∼ N(0, 1.085)):

π(B)Π(Bs)(1−B)d(1−Bs)DZt = ψ(B)Ψ(Bs)at (3.10)

(1 + 0.2680B + 0.2111B2)(1− 0.7620B7)(1−B)(1−B7)Zt ≈ (3.11)

(1− 0.9142B)(1− 0.0006B7 − 0.6255B14 − 0.1021B21 − 0.2686B28)at (3.12)

Figure 3.4: R Code For Weight Data Model Coefficients

10

Flaherty, 11

4 Forecasting

With our top models in hand, we try to forecast our series. We forecast our series out a
month, and compare it to our test data that we reserved from the outset. The forecast can
be done automatically with R using the forecast() function.

The results for the weight data are shown in Figure 4.1 below. The red shading refers
to the 95% Prediction Interval for the SARIMA(2,1,1)(1,1,4)7 model while the blue shading
refers to the 95% Prediction Interval for the SARIMA(0,1,1)(0,1,1)7 model.

Figure 4.1: Comparison Of Predicted And Observed Values For Weight Data

While an argument could be made that the more comprehensive model favored by AIC
overfit to the training data, it actually does a better job at forecasting our test data compared
to the more parsimonious model we suggested. In either case, see how the prediction bounds
grow the larger we move from observed data. This is only natural– our uncertainty about
the future grows based on the time.

11

Flaherty, 12

5 Appendix

#####1. Initial Data######

###1a. Load in data and required packages###

library(tidyverse)

library(scales)

library(forecast)

path="C:/Users/LiamFlaherty/Documents/Academics/ST534 Time Series/Project/weight.csv"

weight=read.csv(path)

weight=weight|>

mutate(Date=as.Date(Date)) |>

mutate(Day=weekdays(Date)) |>

select(Date, Day, Weight, Lower, Upper, HR)

str(weight)

summary(weight)

###1b. Split into training and test###

train=weight[which(weight$Date<"2023-02-01"),]

test=weight[which(weight$Date>="2023-02-01"),]

#####2. Exploratory Data Analysis#####

###2a. Heart Rate###

ggplot(train, aes(x=Date, y=HR)) +

geom_line(color="red", linewidth=1) +

labs(title="Evolution Of Heart Rate",

x="Date",

y="Heart Rate") +

scale_x_date(

date_breaks="1 month",

date_labels="%b %Y") +

theme_bw() +

theme(

plot.title=element_text(hjust=0.5, size=16), #Center the title#

axis.text=element_text(size=14),

axis.title=element_text(size=14),

axis.text.x=element_text(angle=45, hjust=1))

hist(train$HR,

main="Histogram Of HR (8/2022 - 3/2023)",

xlab="Heart Rate",

ylab="Frequency",

xlim=c(45,70),

col="Red")

sd(train$HR)

###2b. Weight###

ggplot(train, aes(x=Date, y=Weight)) +

geom_line(color="blue", linewidth=1) +

labs(title="Evolution Of Weight",

x="Date",

y="Weight") +

scale_x_date(

date_breaks="1 month",

date_labels="%b %Y") +

theme_bw() +

theme(

plot.title=element_text(hjust=0.5, size=16), #Center the title#

12

Flaherty, 13

axis.text=element_text(size=14),

axis.title=element_text(size=14),

axis.text.x=element_text(angle=45, hjust=1))

#####3. Analysis#####

###3a. Convert to time series###

ts_weight=ts(train$Weight) #convert to time series object#

ts_hr=ts(train$HR)

###3b. White Noise Test###

#Clear that weight is not white noise#

whitenoise6=Box.test(ts_hr, #Do we need to fit model?#

lag=6,

type="Ljung-Box")

whitenoise6 #p small \implies yes#

whitenoise12=Box.test(ts_hr, #Do we need to fit model?#

lag=12,

type="Ljung-Box")

whitenoise12 #p small \implies yes#

###3c. Test for stationarity###

adf_result_weight=suppressWarnings(adf.test(ts_weight))

adf_result_weight #difference needed#

adf_result_hr=suppressWarnings(adf.test(ts_hr))

adf_result_hr #stationary#

###3c. Initial P/ACF For HR###

par(mfrow=c(1,2)) #split the display to show two figures in one plot#

acf(ts_hr,

main=paste0("Autocorrelation Function For", "\n", "Heart Rate Data"),

lag.max=30,

ci.col="blue",

col="red",

lwd=4)

pacf(ts_hr,

main=paste0("Partial Autocorrelation Function For", "\n", "Heart Rate Data"),

lag.max=30,

ci.col="blue",

col="red",

lwd=4)

par(mfrow=c(1,1)) #back to one figure per plot#

###3d. Initial P/ACF For Weight###

par(mfrow=c(1,2))

acf(ts_weight,

main=paste0("Autocorrelation Function For", "\n", "Weight Data"),

lag.max=30,

ci.col="blue",

col="red",

lwd=4)

13

Flaherty, 14

pacf(ts_weight,

main=paste0("Partial Autocorrelation Function For", "\n", "Weight Data"),

lag.max=30,

ci.col="blue",

col="red",

lwd=4)

par(mfrow=c(1,1))

###3e. P/ACF For Weight With Regular Difference###

train_diff=diff(ts_weight, lag=1)

par(cex.axis=1.5, cex.lab=1.5)

plot(train_diff,

main="Time Series Of Differenced Weight Data, Lag=1",

xlab="Time",

ylab="Difference",

cex.axis=2,

cex.lab=2,

col="blue",

lwd=2)

par(mfrow=c(1,2))

acf(train_diff,

main=paste0("Autocorrelation Function For", "\n", "Differenced Weight Data"),

lag.max=30,

ci.col="blue",

col=ifelse((0:30 %% 7)==0, "forestgreen", "red"),

lwd=4)

pacf(train_diff,

main=paste0("Partial Autocorrelation Function For", "\n", "Differenced Weight Data"),

lag.max=30,

ci.col="blue",

col=ifelse((0:30 %% 7)==0, "forestgreen", "red"),

lwd=4)

par(mfrow=c(1,1))

###3f. P/ACF For Weight With Just Seasonal Difference###

ts_weight_sdiff=diff(ts_weight, lag=7) #just D=1#

par(mfrow=c(1,2))

acf(ts_weight_sdiff,

main=paste0("Autocorrelation Function For", "\n", "Seasonal Differenced Weight Data"),

lag.max=30,

ci.col="blue",

col=ifelse((0:30 %% 7)==0, "forestgreen", "red"),

lwd=4)

pacf(ts_weight_sdiff,

main=paste0("Partial Autocorrelation Function For", "\n", "Seasonal Differenced Weight Data"),

lag.max=30,

ci.col="blue",

col=ifelse((0:30 %% 7)==0, "forestgreen", "red"),

lwd=4)

par(mfrow=c(1,1))

###3g. P/ACF For Weight With Both Differences###

14

Flaherty, 15

ts_weight_both=diff(diff(ts_weight, lag=7), lag=1) #D=1, d=1#

par(mfrow=c(1,2))

acf(ts_weight_both,

main=paste0("Autocorrelation Function For", "\n", "Seasonal And Regularly Differenced Weight"),

lag.max=30,

ci.col="blue",

col=ifelse((0:30 %% 7)==0, "forestgreen", "red"),

lwd=4)

pacf(ts_weight_both,

main=paste0("Partial Autocorrelation Function For", "\n", "Seasonal And Regularly Differenced Weight"),

lag.max=30,

ci.col="blue",

col=ifelse((0:30 %% 7)==0, "forestgreen", "red"),

lwd=4)

par(mfrow=c(1,1))

#####4. Try A Bunch Of Models#####

###4a. For weight Data###

ARIMAs_model_weight=vector()

aic_weight=vector()

bic_weight=vector()

LBtest_weight=vector()

s=7 #From Analysis#

m=5 #the number of MA and AR terms to try#

i=0 #to keep track of iterations

for (p in 1:m) {

for (d in 1:2) {

for (q in 1:m) {

for (P in 1:m) {

for (D in 1:2) {

for (Q in 1:m) {

i=i+1

print(paste0("i=", round(i/(m^4*2*2), 2))) #where we’re at in the process#

mymodel=paste0("ARIMA(", p-1, ",", d-1, ",", q-1, ")(", P-1, ",", D-1, ",", Q-1, ")",s)

setTimeLimit(cpu=3, elapsed=3) #otherwise would take forever#

model_result=tryCatch({ #for convergence problems#

model=arima(ts_weight,

order=c(p-1,d-1,q-1),

seasonal=list(order=c(P-1,D-1,Q-1), period=s),

method="ML") #By Maximum Likelihood#

ARIMAs_model_weight[i]=mymodel

aic_weight[i]=round(AIC(model),2)

bic_weight[i]=round(BIC(model),2)

LBtest_weight[i]=round(Box.test(residuals(model), lag=21, type="Ljung-Box")$p.value,2)

}, error=function(e) { #for convergence problems#

ARIMAs_model_weight[i]=mymodel

aic_weight[i]=999

bic_weight[i]=999

LBtest_weight[i]=999

})

setTimeLimit(cpu=Inf, elapsed=Inf)

}

}

}

15

Flaherty, 16

}

}

}

df_weight=data.frame(ARIMAs_model=ARIMAs_model_weight,

aic=aic_weight,

bic=bic_weight,

LBtest=LBtest_weight)

df_weight=df_weight[which(df_weight$bic<999),]

df_weight=df_weight[order(df_weight$bic),]

df_weight[1:15,]

save(df_weight, file="modelfit_weight.R")

load("modelfit_weight.R") #so don’t have to run this part of the code#

###4b. For HR Data###

ARIMAs_model_hr=vector()

aic_hr=vector()

bic_hr=vector()

LBtest_hr=vector()

m=5 #the number of MA and AR terms to try#

i=0

for (p in 0:m) {

for (q in 0:m) {

i=i+1

mymodel=paste0("ARMA(", p, ",", q, ")")

model=arima(ts_hr,

order=c(p,0,q),

method="ML") #by Maximum Likelihood#

ARIMAs_model_hr[i]=mymodel

aic_hr[i]=round(AIC(model),2)

bic_hr[i]=round(BIC(model),2)

LBtest_hr[i]=round(Box.test(residuals(model), lag=21, type="Ljung-Box")$p.value,2)

}

}

df_hr=data.frame(

ARMA_model=ARIMAs_model_hr,

aic=aic_hr,

bic=bic_hr,

LBTest=LBtest_hr)

df_hr=df_hr[order(df_hr$bic),]

df_hr[1:10,]

save(df_hr, file="modelfit_hr.R")

load("modelfit_hr.R") #so don’t have to run this part of the code#

#####4c. Getting parameter weights###

hr_ar1=arima(ts_hr, #best in terms of BIC#

order=c(1,0,0),

method="ML")

hr_ma1=arima(ts_hr, #our recommendation; 2nd best in AIC and BIC#

order=c(0,0,1),

method="ML")

weight_sarima211114=arima(ts_weight, #best in terms of AIC#

order=c(2,1,1),

seasonal=list(order=c(1,1,4), period=7),

method="ML")

16

Flaherty, 17

weight_sarima011011=arima(ts_weight, #best in terms of BIC; our recommendation#

order=c(0,1,1),

seasonal=list(order=c(0,1,1), period=7),

method="ML")

hr_ar1

hr_ma1

weight_sarima211114

weight_sarima011011

#####5. Forecast#####

###5a. Weight Data###

forecast_weight_aic=predict(weight_sarima211114,

n.ahead=nrow(test))

forecast_weight_aic=data.frame(

date=seq(from=test$Date[1], to=test$Date[nrow(test)], by="day"),

forecast=forecast_weight_aic$pred,

lower=forecast_weight_aic$pred-1.96*forecast_weight_aic$se,

upper=forecast_weight_aic$pred+1.96*forecast_weight_aic$se,

observed=test$Weight,

resid=test$Weight-forecast_weight_aic$pred

)

forecast_weight_bic=predict(weight_sarima011011,

n.ahead=nrow(test))

forecast_weight_bic=data.frame(

date=seq(from=test$Date[1], to=test$Date[nrow(test)], by="day"),

forecast=forecast_weight_bic$pred,

lower=forecast_weight_bic$pred-1.96*forecast_weight_bic$se,

upper=forecast_weight_bic$pred+1.96*forecast_weight_bic$se,

observed=test$Weight,

resid=test$Weight-forecast_weight_bic$pred

)

rmse_weight_aic=(sum(forecast_weight_aic$resid^2)/nrow(forecast_weight_aic))^(0.5)

rmse_weight_bic=(sum(forecast_weight_bic$resid^2)/nrow(forecast_weight_aic))^(0.5)

rmse_weight_aic #just curious#

rmse_weight_bic #just curious#

forecast_weight_aic

forecast_weight_bic

###5b. Plot Weight Data###

ggplot() +

geom_line(data=forecast_weight_bic,

aes(x=date, y=observed, color="Observed"),

size=1.2) +

geom_line(data=forecast_weight_bic,

aes(x=date, y=forecast, color="Forecast SARIMA(0,0,1)(0,1,1)7"),

size=1.2) +

geom_ribbon(data=forecast_weight_bic,

aes(x=date, ymin=lower, ymax=upper),

fill="blue",

alpha=0.2) +

geom_line(data=forecast_weight_aic,

aes(x=date, y=forecast, color="Forecast SARIMA(2,1,1)(1,1,4)7"),

size=1.2) +

geom_ribbon(data=forecast_weight_aic,

aes(x=date, ymin=lower, ymax=upper),

fill="red",

alpha=0.2) +

scale_color_manual(values=c("Observed"="green",

17

Flaherty, 18

"Forecast SARIMA(0,0,1)(0,1,1)7"="blue",

"Forecast SARIMA(2,1,1)(1,1,4)7"="red")) +

labs(title="Weight Forecasts",

x="Date",

y="Weight",

color="Series",

fill="Interval") +

theme_bw() +

theme(plot.title=element_text(size=16, face="bold", hjust=0.5), #center main title#

axis.title.x=element_text(size=14),

axis.title.y=element_text(size=14),

axis.text.x=element_text(size=14),

axis.text.y=element_text(size=14),

legend.position=c(0.15,0.85), #x position (0,1), y position (0,1)#

legend.background=element_rect(fill="white",color="black")) #put it in a black outlined box

###5c. HR Data###

forecast_hr_ar1=predict(hr_ar1,

n.ahead=nrow(test))

forecast_hr_ar1=data.frame(

date=seq(from=test$Date[1], to=test$Date[nrow(test)], by="day"),

forecast=forecast_hr_ar1$pred,

lower=forecast_hr_ar1$pred-1.96*forecast_hr_ar1$se,

upper=forecast_hr_ar1$pred+1.96*forecast_hr_ar1$se,

observed=test$HR,

resid=test$HR-forecast_hr_ar1$pred

)

forecast_hr_ma1=predict(hr_ma1,

n.ahead=nrow(test))

forecast_hr_ma1=data.frame(

date=seq(from=test$Date[1], to=test$Date[nrow(test)], by="day"),

forecast=forecast_hr_ma1$pred,

lower=forecast_hr_ma1$pred-1.96*forecast_hr_ma1$se,

upper=forecast_hr_ma1$pred+1.96*forecast_hr_ma1$se,

observed=test$HR,

resid=test$HR-forecast_hr_ma1$pred

)

###5d. Plot HR Data###

ggplot() +

geom_line(data=forecast_hr_ar1,

aes(x=date, y=observed, color="Observed"),

size=1.2) +

geom_line(data=forecast_hr_ar1,

aes(x=date, y=forecast, color="Forecast AR(1)"),

size=1.2) +

geom_ribbon(data=forecast_hr_ar1,

aes(x=date, ymin=lower, ymax=upper),

fill="blue",

alpha=0.2) +

geom_line(data=forecast_hr_ma1,

aes(x=date, y=forecast, color="Forecast MA(1)"),

size=1.2) +

geom_ribbon(data=forecast_hr_ma1,

aes(x=date, ymin=lower, ymax=upper),

fill="red",

alpha=0.2) +

scale_color_manual(values=c("Observed"="green",

"Forecast AR(1)"="blue",

"Forecast MA(1)"="red")) +

labs(title="Heart Rate Forecasts",

18

Flaherty, 19

x="Date",

y="Weight",

color="Series",

fill="Interval") +

theme_bw() +

theme(plot.title=element_text(size=16, face="bold", hjust=0.5), #center main title#

axis.title.x=element_text(size=14),

axis.title.y=element_text(size=14),

axis.text.x=element_text(size=14),

axis.text.y=element_text(size=14),

legend.position=c(0.15,0.85), #x position (0,1), y position (0,1)#

legend.background=element_rect(fill="white",color="black")) #put it in a black outlined box

19

	Introduction
	Model Selection
	White Noise Test
	(Weak) Stationarity Test
	Autocorrelation And Partial Autocorrelation Functions
	Seasonality
	Suggested Models
	Model Diagnostics

	Parameter Selection
	Heart Rate Data
	Weight Data

	Forecasting
	Appendix

