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1 Introductory Notes

1.1 Preliminaries

1. Time Series is a sequence of random variables Xt indexed by time (can be either
discrete or continuous).

A. Observations in a time series likely aren’t independent. The dependence between
prior terms is called autocorrelation.

B. Goals might be three-fold

a. Forecasting: decompose into seasonal, trend, and noise

b. transfer models: output in 1 series effects the inputs in another (e.g. mar-
keting and sales)

c. intervention analysis: try and determine the effect of an external event on
a series
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1.2 Stationality, Autocorrelation, Partial Autocorrelation

1. A time-series {Zt}t∈R is strictly-stationary if the joint distribution of Zt1 , Zt2 , . . . , Ztn
is the joint distribution of Zt1+k, Zt2+k, . . . , Ztn+k for all choices of ti and k.

A) A strictly stationary process must be identically distributed

B) The joint distribution of Zt1 , Zt2 , . . . depends only on the lag

2. A time-series {Zt}t∈R is weakly-stationary if E(Zt) = µ for all t (constant mean
assumption) and Cov(Zt, Zt+τ ) depends only on the lag τ (ergo constant variance as-
sumption, V(Zt) = σ2 for all t).

3. Denote Z̃t = Zt − µ. The Autocovariance function of a (weakly) stationary series
for some lag τ is:

γτ = Cov(Zt, Zt+τ )

= E(ZtZt+τ )− E(Zt)E(Zt+τ )
= E(ZtZt+τ )− µ2

= E(Z̃tZ̃t+τ )

Note that γ0 = V(Z̃t) = E(Z̃2
t )− E(Z̃t)2 = E(Z̃2

t ) = σ2.

4. The autocorrelation function (ACF) of a (weakly) stationary series for some lag τ
is:

ρτ =
Cov(Zt, Zt+τ )√
V(Zt)V(Zt+τ )

=
γτ√
σ2σ2

=
γτ
σ2

=
γτ
γ0

A) A property of autocorrelation/covariance functions is symmetry (γτ = γ−τ ). This
follows from the constant variance assumption of weak-stationarity

B) We can write the two functions in matrix form as follows. The covariance ma-
trix, denoted Γn is:

Γn =

 γ0 γ1 · · · γn−1
γ1 γ0 · · · γn−2
...

...
. . .

...
γn−1 γn−2 · · · γ0

 = γ0

 1 ρ1 · · · ρn−1
ρ1 1 · · · ρn−2
...

...
. . .

...
ρn−1 ρn−2 · · · 1

 = γ0Pn

5. The Partial Autocorrelation Function (PACF) is the correlation at a given lag
after removing mutual linear dependence, i.e. Corr(Zt, Zt+k | Zt+1, Zt+2, . . . , Zt+k−1).

A) If Zt+k = ϕk1Zt+k−1 + ϕk2Zt+k−2 + · · · + ϕkkZt + at+k is a linear regression, then
ϕkk is the partial autocorrelation.

a. For example, if y = β0 + β1x
2, β1 is the linear dependence between x2 and y,

whereas if y = β0 + β1x+ β2x
2, β2 is the linear dependence between x

2 and y
after already accounting for the dependence between x and y
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B) In general, we can compute the partial autocorrelations as ϕk,k =

∣∣∣∣∣∣∣∣∣
 1 ρ1 · · · ρk−2 ρ1
ρ1 1 · · · ρk−3 ρ2
...

... · · · . . .
...

ρk−1 ρk−2 · · · ρ1 ρk


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 1 ρ1 · · · ρk−2 ρk−1
ρ1 1 · · · ρk−3 ρk−2
...

... · · · . . .
...

ρk−1 ρk−2 · · · ρ1 1


∣∣∣∣∣∣∣∣∣

6. Non-stationarity can arise in seasonality (periodic and regular changes of the mean),
long-term trend, expanding variance, etc.

7. ARIMA models difference terms to turn a non-stationary series into stationary resid-
uals.
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1.3 White Noise, Backstep Operator, Invertibility

1. White Noise is a purely random process {at}t∈R such that the at are identically
distributed with mean 0, finite variance, and no covariance between terms. As such,
for all k, we must have:

γk = Cov(at, at+k) = E(atat+k) =

{
σ2
a, k=0

0, else
ρk =

{
1, k=0

0, else
PACFk = 0

Also, since every process can be written as a linear combination of white noise:

Cov(at, Z̃t−k) = E(atZ̃t−k) =

{
σ2
a, k ≤ 0

0, else

This follows since:

E(atZ̃t−k) = E (at (at−k + ψk+1at−k−1 + . . . )) Substituting

= E (atat−k + ψk+1atat−k−1 + . . . ) Expanding

= E (atat−k) + ψk+1E (atat−k−1) + . . . Expectations are linear

= E (atat−k) Properties of white noise

2. For ease, use Backstep Operator B. BXt=Xt−1, B
jXt=Xt−j, ψ(B)=

∞∑
j=0

ψjB
j

3. MA representation Any non-deterministic stationary process can be written as a
linear combination of white noise terms.

A) Form is Z̃t = at+ψ1at−1 +ψ2at−2 + · · · =
∞∑
j=0

ψjat−j = ψ(B)at where
∞∑
j=0

|ψj| <∞

a. If you can write with
∞∑
j=0

|ψj| <∞, the series is stationary.

4. AR Representation May be able to represent a stationary process as a linear com-
bination of it’s past values.

A) Form is Z̃t = at + π1Z̃t−1 + π2Z̃t−2 + · · · = at +
∞∑
j=1

πjZ̃t−j. So, π(B)Z̃t = at.

a. Process is called Invertible if the above decomposition is possible (i.e. when at can

be written as a linear combo of past Zt’s). This only happens when
∞∑
j=1

|πj| <∞.

5. There must be a connection between the AR and MA representation

A) Z̃t=ψ(B)at (where ψ(B) =
∞∑
j=0

ψjB
j = (1 + ψ1B + ψ2B

2 + . . . )) and

at=π(B)Z̃t (where π(B) = 1−
∞∑
j=1

πjB
j = (1− π1B − π2B

2 − . . . )), so

left multiplying by ψ(B) we have Z̃t=ψ(B)at=ψ(B)π(B)Z̃t =⇒ ψ(B)π(B)=1

6
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a. An example: Z̃t = at − 0.6at−1 = (1− 0.6B)at.

Then since ψ(B)π(B) = 1, we have (1−0.6B)(1−π1B−π2B2−. . . ) = 1. Equating
the coefficients for each B term (they must all be zero on the left to match the
zeros on the right), we see:

− π1B − 0.6B = 0 =⇒ π1 = −0.6

− π2B
2 + 0.6π1B

2 = 0 =⇒ −π2B2 + 0.6(−0.6)B2 =⇒ π2 = −0.36

− π3B
3 + 0.6π2B

3 = 0 =⇒ −π2B2 + 0.6(−0.36)B2 =⇒ π2 = −0.216

From the perspective of the AR representation at = (1 − π1B − π2B
2 − . . . )Z̃t,

by continuing in the above fashion, we see at = Z̃t + 0.6Z̃t−1 + 0.36Z̃t−2 + · · · =(
∞∑
j=0

(0.6B)j

)
Z̃t and have thus shown how to switch from a finite MA represen-

tation to an infinite AR representation.

Alternatively, since ψ(B) = 1 − 0.6B and π(B)=ψ(B)−1, we have π(B)= 1
1−0.6B

,

which is
∞∑
j=0

(0.6B)j by the geometric series a
1−r=

∞∑
k=0

ark (since 0.6 < 1). This

agrees with the above reasoning.
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1.4 Autoregressive Models

1. AR(P) models are of the form Z̃t = π1Z̃t−1 + · · ·+ πpZ̃t−p + at.

A) Since there are only finitely many terms, every AR(P) process is automatically in-

vertible (recall invertible if the absolute sum of AR coefficients is finite;
∞∑
j=1

|πj|<∞)

B) Since ψ(B) = π−1(B), AR(P) processes are stationary if the roots of π(B) = 0 lie
outside the unit circle (recall stationary if the absolute sum of MA coefficients is

finite;
∞∑
j=1

|ψj|<∞).

2. Can compute autocovariance and autocorrelation functions of AR(P) processes easily
(if it’s stationary!).

γk = E(Z̃tZ̃t−k) Definition

= E
(
(π1Z̃t−1 + · · ·+ πpZ̃t−p + at)Z̃t−k

)
Z̃t as an AR(P) process

= π1E
(
Z̃t−1Z̃t−k

)
+ · · ·+ πpE

(
Z̃t−pZ̃t−k

)
+ E(atZ̃t−k) Expectations are linear

= π1γk−1 + · · ·+ πpγk−p + E(atZ̃t−k) Definition

ρk = π1ρk−1 + · · ·+ πpρk−p +
E(atZ̃t−k)

ρ0
Dividing above by γ0

V(Z̃t) = π1γ1 + · · ·+ πpγp + E(atZ̃t) From derivation of γk

= π1γ1 + · · ·+ πpγp + σ2
a Properties of white noise

A) the system of equations for ρk with k = 1, 2, . . . (and hence E(atZ̃t−k) = 0) are
called the Yule-Walker Equations

B) If the roots of π(B)ρk = 0 are real, get a damped exponential for the ACF. If
roots are complex, get a damped sinusoidal.

3. Can convert between AR(P) and infinite MA representations.

A) Since 1 = π(B)ψ(B), in the AR(1) case, 1 = (1−π1B)(1+ψ1B+ψ2B
2+· · · ). Both

sides of this equation are functions in B; the order on either side must be the same.
Expanding and grouping 1 = 1+(ψ1−π1)B+(ψ2−π1ψ1)B

2+(ψ3−π1ψ2)B
3+ · · · .

From the second term, ψ1 = π1. From the third term, ψ2 = π1ψ1 = π2
1, and, in

general, ψk = πk1 .

B) Example: Z̃t = 0.6Z̃t−1 − 0.08Z̃t−2 + at. Is this stationary?
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at = Z̃t − 0.6Z̃t−1 + 0.08Z̃t−2 + at Rearranging

= (1− 0.6B + 0.08B2)Z̃t Write with backshift operator

= (1− 0.4B)(1− 0.2B)Z̃t Factoring

Since the roots of the polynomial are 5
2
, 5 and both are outside the unit circle, the

process is stationary.

C) Example: Z̃t = 0.2Z̃t−1 − 0.6Z̃t−2 + at. Is this stationary? We can write at =

(1−0.2B+0.6B2)Z̃t. Using the quadratic formula, we see our roots are 0.2±
√
0.4−2.4
1.2

.
These are complex roots with a squared modulus greater than 1, so the un-squared
modulus is also greater than 1– the process is also stationary.

4. One can identify an AR(p) process when the ACF is infinite in extent, and the PACF
cuts off after lag p

9
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1.5 Moving Average Models

1. We can write our autocovarainces and autocorrelations as follows:

γk = E(Z̃tZ̃t+k) Definition

= E

(
∞∑
i=0

ψiat−i

∞∑
j=0

ψjat+k−j

)
MA representation

= E

(
∞∑
i=0

∞∑
j=0

ψiψjat−iat+k−j

)
Grouping

=
∞∑
i=0

∞∑
j=0

ψiψjE (at−iat+k−j) Expectations are linear

=
∞∑
j=0

ψj−kψjE (at+k−jat+k−j) i ̸= j − k =⇒ E(at−iat+k−j) = 0

= σ2
a

∞∑
j=0

ψj−kψj Properties of White Noise

2. MA(q) processes have an ACF function that cuts off after lag q with an infinite PACF

10
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1.6 ARMA Models

1. Use when both ACF and PACF appear infinite

2. Form of ARMA(p,q) is Z̃t = π1Z̃t−1+ · · ·+πpZ̃t−p+ψ1at−1+ · · ·+ψqat−q+at and then
π(B)Z̃t = ψ(B)at

A) Can think of it as a pth order AR process with a qth order error term

B) Stationarity occurs if the roots of π(B) lie outside the unit circle, invertibility
occurs if the roots of ψ(B) lie outside the unit circle. This is because we can write

Z̃t =
ψ(B)
π(B)

at to put the model in terms of an AR process, and do the opposite to
put the model in terms of an MA process. The AR polynomial will have roots
outside the unit circle only when π(B) has roots outside the unit circle, and the
opposite is true for the MA polynomial.

3. If we assume stationarity, then multiplying both sides of the equation for Z̃t by Z̃t−k
and taking expectations yields the covariance function:
γk = π1γk−1 + · · ·+ πpγk+p + ψ1E(Z̃t−kat−1) + · · ·+ ψqE(Z̃t−kat−q) + E(Z̃t−kat)

A) If our model is Z̃t = π1Z̃t−1+at−ψ1at−1, then we can compute the autocovariance
functions as:

γk = E
(
Z̃tZ̃t−k

)
Multiply left by Z̃t−k

= E
(
π1Z̃t−1Z̃t−k + atZ̃t−k − ψ1at−1Z̃t−k

)
Multiply right by Z̃t−k

= π1γk−1 + E
(
atZ̃t−k

)
− ψ1E

(
atZ̃t−(k−1)

)
Expectations are linear

Using this function, we compute the autocovariance for the first two lags as:

γ0 = π1γ1 + σ2
a − ψ1ψ2σ

2
a Properties of white noise, ψ1E

(
atZ̃t+1

)
= ψ1ψ2σ

2
a

γ1 = π1γ0 − ψ1σ
2
a Properties of white noise, E

(
atZ̃t−1

)
= 0

Where ψ2 is the coefficient to the MA expansion of Z̃t+1. For instance, if E(atZ̃t+1) =
E(atb0Z̃t) + E(atb1Z̃t−1) + E(atb2Z̃t−2) + · · · = b0σ

2
a + 0 + 0 + . . . , ψ2 = b0.

Substituting γ1 into γ0, we have:

γ0 = π1
[
π1γ0 − ψ1σ

2
a

]
+ σ2

a − ψ1ψ2σ
2
a

γ0 − π2
1γ0 = −π1ψ1σ

2
a + σ2

a − ψ1ψ2σ
2
a

γ0 =
σ2
a (1− π1ψ1 − ψ1ψ2)

1− π2
1

Substituting this γ0 into γ1, we get γ1, and then have the recursion γk = π1γk−1

for k ≥ 3.
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2 Problems

2.1 Stationarity, Invertibility, ACF/PACF Calculations

1) Let Zt = 2 + 0.5t + at where {at} is a white noise sequence with mean zero
and variance σ2

a. Determine the mean and variance functions for the process
{Zt}. Is the process stationary?

We can compute the expectation as:

E(Zt) = E(2 + 0.5t+ at)

= E(2) + E(0.5t) + E(at) Expectations are linear

= 2 + 0.5t Only non-constant is at, and E(at) = 0

We can compute the variance as:

V(Zt) = V(2 + 0.5t+ at)

= V (at) Since V(c+ Y ) = V(Y ) for constants c

= σ2
a

The mean of Zt changes over time, so by definition, the process can not be stationary.

12
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2) Henceforth let Z̃t = Zt − µ be a mean zero process with {at} a white noise
sequence with variance σ2

a. For each of the following, determine if the process is
stationary and if it is invertible. If it is stationary, compute the ACF and PACF
for lags of k = 0, 1, 2, 3, 4.

An AR process Z̃t = at+
∞∑
j=1

πjZ̃t−j (equivalently, at = π(B)Z̃t) is invertible if
∞∑
j=1

|πj| <∞.

Since all the below processes have finitely many non-zero coefficients πi, all the processes are
automatically invertible (a finite sum of finite values is finite).

The Yule-Walker equations give us an easy way to compute the autocovariances (and
thus autocorrelations) of an AR(p) process. We have γk = π1γk−1 + · · ·+ πpγk−p for all lags
k = 1, 2, 3, . . . . The autocorrelation of a value with itself is always 1.

In general, we can compute the partial autocorrelations as ϕk,k =

∣∣∣∣∣∣∣∣∣
 1 ρ1 · · · ρk−2 ρ1
ρ1 1 · · · ρk−3 ρ2
...

... · · · . . .
...

ρk−1 ρk−2 · · · ρ1 ρk


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 1 ρ1 · · · ρk−2 ρk−1
ρ1 1 · · · ρk−3 ρk−2
...

... · · · . . .
...

ρk−1 ρk−2 · · · ρ1 1


∣∣∣∣∣∣∣∣∣

.

Like the autocorrelations, the partial autocorrelation of a value against itself (i.e. lag zero) is
one. The partial autocorrelation of a lag 1 is the same as the autocorrelation. For an AR(P)
process, the partial autocorrelation of a lag k > P is zero. Of course, if we had a way to
write our model as Z̃t+k = ϕk,1Z̃t+k−1+ϕk,2Z̃t+k−2+ · · ·+ϕk,kZ̃t+at+k, then we could simply
pick off the autocorrelation as the coefficient to the last term.

a. Z̃t − 0.5Z̃t−1 = at

We can write the process as (1 − 0.5B)Z̃t = at. Since the root of (1 − 0.5B) is 2, which
lies outside the complex unit circle, the process is stationary.

The process is an AR(1) and so the autocorrelation function from the Yule-Walker equa-
tion has just one term– ρk = π1ρk−1 = 0.5ρk−1. So ρ1 = 0.5, ρ2 = 0.25, ρ3 = 0.125, and ρ4 =
0.06125.

The partial autocorrelation is 0.5 at a lag of 1 (it is an AR(1) process, so is the same as
the autocorrelation), and 0 at every other non-zero k.

b. Z̃t − 0.9Z̃t−1 = at

We can write the process as (1− 0.9B)Z̃t = at. Since the root of (1− 0.9B) is 10
9
, which

lies outside the complex unit circle, the process is stationary.

For the same reasoning as part a, the autocorrelations are ρ1 = 0.9, ρ2 = 0.81, ρ3 = 0.729,
and ρ4 = 0.6561. The partial autocorrelation is 0.9 at a lag of 1, and 0 at other non-zero k.

13
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c. Z̃t − 1.3Z̃t−1 + 0.4Z̃t−2 = at

We can write the process as (1− 1.3B + 0.4B2)Z̃t = at. The roots of (0.4B2 − 1.3B + 1)

are:
−(−1.3)±

√
(−1.3)2−4(0.4)(1)

2(0.4)
= 1.3±

√
1.69−1.6
0.8

= 1.3±
√
.09

0.8
= −1.3±0.3

0.8
= 1.25, 2. These are real

roots which both lie outside the complex unit circle, so the process is stationary.

The autocorrelations can be computed from the Yule-Walker equations with p = 2. Re-
calling ρ0 = 1 and the symmetry of the correlations, we compute:

ρ1 = π1ρ1−1 + π2ρ1−2 = (1.3)(1) + (−0.4)(ρ1) =⇒ ρ1 =
1.3

1 + 0.4
≈ 0.93

ρ2 = π1ρ2−1 + π2ρ2−2 = (1.3)(ρ1) + (−0.4)(1) =⇒ ρ2 =
1.3 · 1.3
1.4

− 0.4 ≈ 0.81

ρ3 = π1ρ3−1 + π2ρ3−2 = (1.3)(ρ2) + (−0.4)(ρ1) =⇒ ρ3 ≈ 0.68

ρ4 = π1ρ4−1 + π2ρ4−2 = (1.3)(ρ3) + (−0.4)(ρ2) =⇒ ρ4 ≈ 0.56

For the partial autocorrelations, we see:

ϕ1,1 = ρ1 ≈ 0.93

ϕ2,2 =

∣∣∣ [ 1 ρ1ρ1 ρ2

] ∣∣∣∣∣∣ [ 1 ρ1
ρ1 1

] ∣∣∣ = ρ2 − ρ21
1− ρ21

≈ 0.81− 0.932

1− 0.93
≈ −0.4

Double-checking our work:

14
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d. Z̃t − 1.2Z̃t−1 + 0.8Z̃t−2 = at

We can write the process as (1− 1.2B + 0.8B2)Z̃t = at. The roots of (0.8B2 − 1.2B + 1)

are:
−(1.2)±

√
(−1.2)2−4(0.8)(1)

2(0.8)
= −1.2±

√
1.44−3.2

1.6
= −1.2±

√
−1.76

1.6
. We see there are complex roots,

and with the help of software see that the modulus of these roots lie outside the complex
unit circle, so the process is stationary.

The autocorrelations can be computed from the Yule-Walker equations with p = 2. Re-
calling ρ0 = 1 and the symmetry of the correlations, we compute:

ρ1 = π1ρ1−1 + π2ρ1−2 = (1.2)(1) + (−0.8)(ρ1) =⇒ ρ1 =
1.2

1 + 0.8
=

2

3

ρ2 = π1ρ2−1 + π2ρ2−2 = (1.2)(ρ1) + (−0.8)(1) =⇒ ρ2 =
1.2 · 2
3

− 0.8 = 0

ρ3 = π1ρ3−1 + π2ρ3−2 = (1.2)(ρ2) + (−0.8)(ρ1) =⇒ ρ3 = −0.8
2

3
≈ −0.53

ρ4 = π1ρ4−1 + π2ρ4−2 = (1.2)(ρ3) + (−0.8)(ρ2) =⇒ ρ4 ≈ −0.64

For the partial autocorrelations, we see:

ϕ1,1 = ρ1 =
2

3

ϕ2,2 =

∣∣∣ [ 1 ρ1ρ1 ρ2

] ∣∣∣∣∣∣ [ 1 ρ1
ρ1 1

] ∣∣∣ = 0− 2
3

2

1− 2
3

2 =
−4

9
5
9

=
−4

5

Double-checking our work:
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2.1 Stationarity, Invertibility, ACF/PACF Calculations Flaherty, 16

3) Compute the AR and MA processes for the below representations.

a. Find the AR representation of the MA(1) process Z̃t = at − 0.4at−1.

In general, the MA representation is Z̃t = ψ(B)at and AR representation is π(B)Z̃t = at
for some functions ψ and π of B. Left multiplying the AR representation by ψ(B), we see
that ψ(B)π(B)Z̃t = ψ(B)at = Z̃t, or that ψ(B) = π−1(B).

Applying this to the problem at hand, ψ(B) = (1 − 0.4B) and so, by the formula for a

geometric series (since 0.4 < 1), π(B) = (1 − 0.4B)−1 =
∞∑
n=0

0.4Bn. Our AR representation

is then Z̃t + 0.4Z̃t−1 + 0.16Z̃t−2 + · · · = at, or more compactly at =
∞∑
n=0

0.4nZ̃t−n.

b. Find the MA representation of the AR(2) process Z̃t = 0.2Z̃t−1+0.4Z̃t−2+at.

For notational ease we can rewrite the above as Z̃t−0.2Z̃t−1−0.4Z̃t−2 = at and then read
off π(B) as (1− 0.2B − 0.4B2). Here we hit a dead-end since we can’t factor the polynomial
into the form (1 − xB)(1 − yB) and use the same geometric series trick in part a. Instead,
we try substitution.

First, we substitute for Z̃t−1 to eliminate the Z̃t−1 term and add a at−1 term in our
representation:

Z̃t = 0.2[0.2Z̃t−2 + 0.4Z̃t−3 + at−1] + 0.4Z̃t−2 + at

= 0.04Z̃t−2 + 0.08Z̃t−3 + 0.2at−1 + 0.4Z̃t−2 + at

= 0.44Z̃t−2 + 0.08Z̃t−3 + at + 0.2at−1

Next, we substitute for Z̃t−2 for the same reason:

Z̃t = 0.44[0.2Z̃t−3 + 0.4Z̃t−4 + at−2] + 0.08Z̃t−3 + at + 0.2at−1

= 0.088Z̃t−3 + 0.176Z̃t−4 + 0.44at−2 + 0.08Z̃t−3 + at + 0.2at−1

= 0.168Z̃t−3 + 0.176Z̃t−4 + at + 0.2at−1 + 0.44at−2

To see where we are going, we can substitute one more time:

Z̃t = 0.168[0.2Z̃t−4 + 0.4Z̃t−5 + at−3] + 0.176Z̃t−4 + at + 0.2at−1 + 0.44at−2

= 0.0336Z̃t−4 + 0.0672Z̃t−5 + 0.168at−3 + 0.176Z̃t−4 + at + 0.2at−1 + 0.44at−2

= 0.2096Z̃t−4 + 0.0672Z̃t−5 + at + 0.2at−1 + 0.44at−2 + 0.168at−3

Continuing in this fashion, we can continually add an at−n term. Carefully backtracking
the calculation of the αt−3 term, we see it is the coefficient of the Z̃t−3 term, which itself is
the sum of the product of 0.44 (the at−2 term) and 0.2 with 0.08 (the product of 0.2– the at−1

term– and 0.4). So generically, for n ≥ 3, we have ψt−n = 0.2ψt−n+1+0.4ψt−n+2. Compactly,

we have Z̃t = at + 0.2at−1 + 0.44at−2 +
∞∑
j=3

(0.2ψt−j+1 + 0.4ψt−j+2).

16



2.1 Stationarity, Invertibility, ACF/PACF Calculations Flaherty, 17

4) Consider the AR(3) process (1− 0.4B)(1− 0.2B+0.6B2)Z̃t = at. Let σ2
a = 1.

Determine the roots of ϕ(B) = 0 and then answer the following: Is the process
Z̃t stationary? Invertible? Why or why not? If the process is stationary, deter-
mine its autocorrelation function for integer values of k (you may give recursive
equations for ρk for k > 3).

The roots of ϕ(B) are 5
2
(read off from the first factor) and about 0.16 ± 1.28i from the

quadratic factor (as calculated by software, see below). Since all these roots have a modulus
outside the complex unit circle, the process is stationary. Any AR(P) process with finite P
is invertible as explained in question 2.

To compute the autocorrelations, we can expand out the product, write our process in
full, and then use the Yule-Walker equations to compute the correlations. We have π(B) =
1−0.2B+0.6B2−0.4B+0.08B2−0.24B3 or 1−0.6B+0.68B2−0.24B3. In full, our process
is Z̃t = 0.6Z̃t−1 − 0.68Z̃t−2 + 0.24Z̃t−3 + at. We calculate as follows:

ρ1 = π1ρ1−1 + π2ρ1−2 + π3ρ1−3 = (0.6)ρ0 + (−0.68)ρ1 + (0.24)ρ2 = (0.6) + (−0.68)ρ1 + (0.24)ρ2

ρ2 = π1ρ2−1 + π2ρ2−2 + π3ρ2−3 = (0.6)ρ1 + (−0.68)ρ0 + (0.24)ρ1 = (0.84)ρ1 + (−0.68)

ρ3 = π1ρ3−1 + π2ρ3−2 + π3ρ3−3 = (0.6)ρ2 + (−0.68)ρ1 + (0.24)ρ0 = (0.6)ρ2 + (−0.68)ρ1 + (0.24)

Substituting the second equation into the first, we see:

ρ1 = (0.6) + (−0.68)ρ1 + (0.24)
(
(0.84)ρ1 + (−0.68)

)
= 0.4368− 0.4784ρ1

So ρ1 = 0.4368
1+0.4784

≈ 0.295, and then ρ2 = 0.84(0.4368
1.4784

) − 0.68 ≈ −0.432, and finally ρ3 =

0.6(0.84(0.4368
1.4784

) − 0.68) + (−0.68)(0.4368
1.4784

) + 0.24 ≈ −0.22. For k > 3, we get the recursion
ρk = 0.6ρk−1 − 0.68ρk−2 + 0.24ρk−3. As always, we get the negative “lags” by appealing to
symmetry; ρk = ρ−k.

Double checking our work:

17
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2.2 Simulation, Theoretical vs. Empirical ACF/PACF, Reduced
Forms

1) Consider the time series

Model 1: Zt = at + 0.5at−1 + 0.24at−2

Model 2: Zt = 0.8Zt−1 + at − 0.3at−1

a. Simulate data of lengths 50 and 1000 for the models. Use a burn-in period of
length 101 (t = −100 to 0) before outputting data from the model.

We can use the arima.sim() command from R. The below script gives us our simulation:

And this code results in output like the below:

18
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b. Use software to produce plots of the simulated time series, and the estimated
autocorrelation (ACF) and partial autocorrelation (PACF) functions.

We can plot the simulated data and estimated ACF and PACF functions. The full script
is in the appendix, but the gist is below.

The output for the four models are shown below. Note that with smaller sample sizes,
the estimated ACF and PACF is not as reliable. For example, the ACF of the MA(2) model
spikes at lags out to 10 when there is only 50 data points, whereas with more data, the ACF
seems to cut off after the second lag, as would be expected theoretically.

19
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c. Show whether or not the model is stationary, and whether or not the model
is invertible. If the model is stationary, do the following:

The MA representation of a model, say Z̃t =
∞∑
j=0

ψjat−j = ψ(B)at, is stationary when

∞∑
j=0

|ψj| <∞. It is invertible when the roots of ψ(B) lie outside the unit circle. Similarly, the

AR representation of a model, say Z̃t = at+
∞∑
1=0

πjZt−j =⇒ π(B)Z̃t = at, is invertible when

∞∑
1=0

|πj| < ∞. It is stationary when the roots of π(B) lie outside the unit circle. Logically,

an ARMA model π(B)Z̃t = ψ(B)at is stationary when the roots of ψ(B) lie outside the unit
circle, and invertible when the roots of π(B) lie outside the unit circle.

The first model, Z̃t = at + 0.5at−1 + 0.24at−2 = (1 + 0.5B + 0.24B2)at, is an MA(2) and

so is automatically stationary. It is also invertible, since it’s roots are
−0.5±

√
0.52−4(0.24)(1)

2(0.24)
or

−0.5±i
√
0.71

0.48
= −0.5

0.48
±

√
0.71
0.48

i, and the complex modulus of this is

√(−0.5
0.48

)2
+
(√

0.71
0.48

)2
or better

yet
√

0.25
0.482

+ 0.71
0.482

. The numerator of the second term in the square root is larger than its

denominator, so the entire value in the square root is greater than one and thus the entire
expression is greater than one.

The second model, Z̃t = 0.8Zt−1 + at− 0.3at−1 =⇒ (1− 0.8B)Z̃t = (1− 0.3B)at, is both
stationary and invertible since the roots of π(B) and ψ(B) both lie inside the unit circle. To
see this, see that the constant in both functions is 1, and the coefficient to the B terms being
subtracted are both below 1 (so the root must be above 1).
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i. Determine theoretical autocorrelations (the true model values) ρ1, ρ2, and ρ3

as well as partial autocorrelations ϕ11, ϕ22, and ϕ33 for each of the two models.

The covariance function for the MA(2) is given by:

γ1 = E(Z̃tZ̃t−1) Definition

= E ((at + 0.5at−1 + 0.24at−2) (at−1 + 0.5at−2 + 0.24at−3)) Substitution

= E(0.5a2t−1 + (0.24)(0.5)a2t−2) Ignore off diagonal terms

= 0.5σ2
a + 0.12σ2

a Expectations are linear

and γ2 = E ((at + 0.5at−1 + 0.24at−2) (at−2 + 0.5at−3 + 0.24at−4)) = E(0.24a2t−2) = 0.24σ2
a.

Note that we can ignore the off-diagonal terms since E(atat+k) = 0 when k ̸= 0 by the defi-
nition of white-noise. The variance of model is:

γ0 = V(Z̃t) = V(at + 0.5at−1 + 0.24at−2) Substitution

= V(at) + 0.52V(at−1) + 0.242V(at−1) No covariance between terms

= σ2
a(1 + 0.52 + 0.242) Constant variance assumption

In general, the autocorrelations at lag k are ρk =
γk
γ0

and thus ρ1 =
0.5σ2

a+0.12σ2
a

σ2
a(1+0.52+0.242)

≈ 0.47,

ρ2 =
0.24σ2

a

σ2
a(1+0.52+0.242)

≈ 0.18, and, since the process is an MA(2), ρ3 = 0.

In general, we can compute the partial autocorrelations as ϕk,k =

∣∣∣∣∣∣∣∣∣
 1 ρ1 · · · ρk−2 ρ1
ρ1 1 · · · ρk−3 ρ2
...

... · · · . . .
...

ρk−1 ρk−2 · · · ρ1 ρk


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 1 ρ1 · · · ρk−2 ρk−1
ρ1 1 · · · ρk−3 ρk−2
...

... · · · . . .
...

ρk−1 ρk−2 · · · ρ1 1


∣∣∣∣∣∣∣∣∣

.

Here, we have:

ϕ1,1 = ρ1 ≈ 0.47

ϕ2,2 =

∣∣∣ [ 1 ρ1ρ1 ρ2

] ∣∣∣∣∣∣ [ 1 ρ1
ρ1 1

] ∣∣∣ = ρ2 − ρ21
1− ρ21

≈ 0.18− (0.472)

1− 0.472
≈ −0.05

ϕ3,3 =

∣∣∣∣ [ 1 ρ1 ρ1
ρ1 1 ρ2ρ2 ρ1 ρ3

] ∣∣∣∣∣∣∣∣ [ 1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

] ∣∣∣∣ =
(1)(ρ3 − ρ1ρ2)− (ρ1)(ρ1ρ3 − ρ22) + (ρ1)(ρ

2
1 − ρ2)

(1)(1− ρ21)− (ρ1)(ρ1 − ρ1ρ2) + (ρ2)(ρ21 − ρ2)
≈ −0.09

We can double check our calculations with the below:
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We compute the theoretical autocovariance of the ARMA(1,1) as follows:

γk = E(Z̃tZ̃t−k) Definition

= E
(
0.8Z̃t−1Z̃t−k + Z̃t−kat − 0.3Z̃t−kat−1

)
Multiplying through by Z̃t−k

= 0.8E(Z̃t−1Z̃t−k) + E(Z̃t−kat)− 0.3E(Z̃t−kat−1) Expectations are linear

=


0.8γ0 − 0.3σ2

a, k = 1

0.8γ1, k = 2

0.8γ2, k = 3

Properties of white noise

We can compute the variance as follows:

V(Z̃t) = V
(
0.8Z̃t−1 + at − 0.3at−1

)
Substitution

= 0.82V(Z̃t−1) + σ2
a + 0.32σ2

a + 2
(
(0.8)(−0.3)σ2

a)
)

=
(1 + 0.32 − 0.48)σ2

a

1− 0.82
=

0.61σ2
a

0.36
Weak Stationarity

On the second line, we use the general formula for the variance of a linear combination,

V
(

n∑
i=1

ciXi

)
=

n∑
i=1

ciV(Xi) + 2
n∑
i=1

n∑
j:j>i

cicjCov(Xi, Xj), and the observation that the covari-

ance between the other two random variables in the double sum are zero by the properties
of white-noise.

The autocorrelations are ρ1 = γk
γ0
, so ρ1 =

0.8

(
0.61σ2

a
0.36

)
−0.3σ2

a

0.61σ2
a

0.36

= 0.8 − 0.3·0.36
.61

≈ 0.62, ρ2 ≈

0.8(0.62) ≈ 0.50, and ρ3 ≈ 0.8(0.5) ≈ 0.4.

To find the partial autocorrelations, we use the same process as before:

ϕ1,1 = ρ1 ≈ 0.62

ϕ2,2 =

∣∣∣ [ 1 ρ1ρ1 ρ2

] ∣∣∣∣∣∣ [ 1 ρ1
ρ1 1

] ∣∣∣ = ρ2 − ρ21
1− ρ21

≈ 0.5− (0.622)

1− 0.622
≈ 0.18

ϕ3,3 =

∣∣∣∣ [ 1 ρ1 ρ1
ρ1 1 ρ2ρ2 ρ1 ρ3

] ∣∣∣∣∣∣∣∣ [ 1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

] ∣∣∣∣ =
(1)(ρ3 − ρ1ρ2)− (ρ1)(ρ1ρ3 − ρ22) + (ρ1)(ρ

2
1 − ρ2)

(1)(1− ρ21)− (ρ1)(ρ1 − ρ1ρ2) + (ρ2)(ρ21 − ρ2)
≈ 0.05

We verify our calculations with the below:
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ii. Discuss what you observe as far as the proximity of the estimated auto-
correlations values to the true values.

We see that with an increased sample, the estimated ACF moves closer to the theoretical
ACF. The comparison between the two models at the two different sample sizes are shown
below.
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2) Let Z̃t = 0.4Z̃t−1 + 0.21Z̃t−2 + at + 0.7at−1 + 0.12at−2. Is the model in its
reduced form? If not, write the model in reduced form.

The above model can be written as Z̃t − 0.4Z̃t−1 − 0.21Z̃t−2 = at + 0.7at−1 + 0.12at−2 or
equivalently (1− 0.4B − 0.21B2) Z̃t = (1 + 0.7B + 0.12B2) at.

We can compute the roots of π(B) = (1− 0.4B − 0.21B2) as:

0.4±
√

(0.42)− 4(−0.21)(1)

2(−0.21)
=

0.4±
√
1

−0.42
=

(
−0.6

−0.42
,

1.4

−0.42

)
=

(
10

7
,−10

3

)
And the roots of ψ(B) = (1 + 0.7B + 0.12B2) as:

−0.7±
√
(0.72)− 4(0.12)(1)

2(.12)
=

−0.7±
√
.01

0.24
=

− 7
10

± 1
10

0.24
=

(
−10

3
,−5

2

)
In general, we can tell if a model is in reduced form if there are no common roots in the

ψ(B) and π(B) polynomials. Here, there is one common root, −10
3
. So we can write:

(
1− 0.4B − 0.21B2

)
Z̃t =

(
1 + 0.7B + 0.12B2

)
at

−0.21

(
B − 10

7

)(
B +

10

3

)
Z̃t = 0.12

(
B +

10

3

)(
B +

5

2

)
at

−0.21

(
B − 10

7

)
Z̃t = 0.12

(
B +

5

2

)
at

−0.21Z̃t−1 + 0.3Z̃t = 0.12at−1 + 0.3at

−0.7Z̃t−1 + Z̃t = 0.4at−1 + 1at

And we see that the reduced model is Z̃t = 0.7Z̃t−1 + at + 0.4at−1

3) For the following two time series models, determine if Wt = (1 − B)Z̃t is
stationary and if it is invertible. (1 − B)Z̃t = at − at−1 and (1 − B)2Z̃t =
at − 0.81at−1 + 0.38at−2.

The first model is Wt = (1 − B)Z̃t = at − at−1, which can be written Wt = ψ(B)at =
(1−B)at. This is an MA(2), and since all finite MA processes are stationary,Wt is stationary.
The process is invertible if the roots of ψ(B) lie outside the unit circle. Since the root is 1,
the process is not invertible.

The second model is Wt = (1−B)Z̃t = (at − 0.81at−1 + 0.38at−2) (1−B)−1 which can be

writtenWt = ψ(B)at =
(1−0.81B+0.38B2)

(1−B)
at. The denominator has a root of 1, so ψ(B) is infinite

in extent and fails to be absolutely summable; Wt is non-stationary. The function ψ(B) has a
root at B = x if and only if the numerator of the function has a root at the same B = x. So we

can use the quadratic formula and identify the roots as
0.81±

√
0.812−4(.38)(1)

2(.38)
= 0.81±i

√
0.8639

0.76
. The

complex modulus is then
√(

0.81
0.76

)2
+
(
.8639
0.762

)
>
√

.8639
0.762

> 1, and so the process is invertible.
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2.3 Reduced Forms, MA and AR Conversions

1) Consider the following models:

A : (1 − B)Z̃t = (1 − 1.5B)at

B : (1 − 0.8B)Z̃t = (1 − 0.5B)at

C : (1 − 1.1B + 0.8B2)Z̃t = (1 − 1.7B + 0.72B2)at

D : (1 − 0.6B)Z̃t = (1 − 1.2B + 0.2B2)at

a. Verify whether or not the model for Zt is stationary and/or invertible.

An ARMA model is stationary when all the roots of it’s AR polynomial lie outside the
complex unit circle. From inspection, that means models B and D are stationary. We can find

the roots of the AR polynomial for model C as
1.1±

√
1.12−4(0.8)(1)

2(0.8)
= 1.1±

√
−1.99

1.6
= 11

16
± i

√
1.99
1.6

and

so the complex modulus is
√

121
256

+ 199
256

>
√
1 = 1, which means model C is also stationary.

All told, models B, C, and D are stationary.

An ARMA model is invertible if all the roots of it’s MA polynomial lie outside the
complex unit circle. From inspection, that means model B is invertible. We can find the

roots of the MA polynomial for model C as
1.7±

√
1.72−4(0.72)(1)

2(0.72)
= 1.7±

√
2.89−2.88
1.44

= 1.7±0.1
1.44

> 1
and so model C is also invertible. We can find the roots of the MA polynomial for model D

as
1.2±

√
1.22−4(0.2)(1)

2(0.2)
= 1.2±0.8

0.4
; one of the roots lies on the unit circle and so model D is not

invertible. All told, models B and C are invertible.
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b. Express the model as an infinite MA if the process is stationary.

We equate the coefficients of the backshift operator to get the expression. In the case of
Model B, we have:

(1− 0.8B)Z̃t = (1− 0.5B)at

(1− 0.8B)
(
1 + ψ1B + ψ2B

2 + · · ·
)
at = (1− 0.5B)at

And so:

ψ1B − 0.8B = −0.5B =⇒ ψ1 = 0.3

ψ2B
2 − 0.8ψ1B

2 = 0B2 =⇒ ψ2 = 0.24

ψ3B
3 − 0.8ψ2B

3 = 0B3 =⇒ ψ3 = 0.8(0.24)

Continuing in this fashion, we have: ψBk
=

{
0.3, k = 1

0.8(0.3)k−1, k > 1

In the case of model C, we have:

(1− 1.1B + 0.8B2)Z̃t = (1− 1.7B + 0.72B2)at

(1− 1.1B + 0.8B2)
(
1 + ψ1B + ψ2B

2 + · · ·
)
= (1− 1.7B + 0.72B2)at

And so:

ψ1B − 1.1B = −1.7B =⇒ ψ1 = −0.6

ψ2B
2 − 1.1ψ1B

2 + 0.8B2 = 0.72B2 =⇒ ψ2 = 0.72 + (1.1 · −0.6)− 0.8 = −0.74

ψ3B
3 − 1.1ψ2B

3 + 0.8ψ1B
3 = 0B3 =⇒ ψ3 = 1.1(−0.74)− 0.8(−0.6)

Continuing in this way, we achieve the recursion ψCk
= 1.1(ψCk−1

)− 0.8(ψCk−2
) for k ≥ 3

where ψCk1
= −0.6 and ψCk2

= −0.74.

In the case of model D, we have:

(1− 0.6B)Z̃t = (1− 1.2B + 0.2B2)at

(1− 0.6B)
(
1 + ψ1B + ψ2B

2 + · · ·
)
= (1− 1.2B + 0.2B2)at

And so:

ψ1B − 0.6B = −1.2B =⇒ ψ1 = −0.6

ψ2B
2 − 0.6ψ1B

2 = 0.2B2 =⇒ ψ2 = 0.2 + 0.6(−0.6) = −0.16

ψ3B
3 − 0.6ψ2B

3 = 0 =⇒ ψ3 = 0.6(−0.16)

Continuing in this way, we see ψDk
= 0.6k−2(−0.16) for k ≥ 3 while ψD1 = −0.6 and

ψD2 = −0.16.
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c. Express the model as an infinite AR representation if the process is invertible.

We use the same strategy of equating coefficients. In the case of model B, we have:

(1− 0.8B)Z̃t = (1− 0.5B)at

(1− 0.8B)Z̃t = (1− 0.5B)(1 + π1B + π2B
2 + · · · )Z̃t

And so:

− 0.8B = π1B − 0.5B =⇒ π1B = −0.3B =⇒ π1 = −0.3

0 = π2B
2 − 0.5π1B

2 =⇒ π2 = (0.5)(−0.3)

0 = π3B
2 − 0.5π2B

2 =⇒ π3 = 0.5π2 =⇒ π3 = 0.5(0.5)(−0.3)

Continuing in this way, we have πk = 0.5k−1(−0.3).

In the case of model C, we have:

(1− 1.1B + 0.8B2)Z̃t = (1− 1.7B + 0.72B2)at

(1− 1.1B + 0.8B2)Z̃t = (1− 1.7B + 0.72B2)(1 + π1B + π2B
2 + · · · )Z̃t

And so:
− 1.1B = π1B − 1.7B =⇒ π1 = 0.6

0.8B2 = π2B
2 − 1.7π1B

2 + 0.72B2 =⇒ π2 = 0.8− 0.72 + 1.7(0.6) = 1.1

0 = π3B
3 − 1.7π2B

3 ++0.72π1B
3 =⇒ π3 = 1.7(1.1) + 0.72(0.6) = 2.302

Continuing in this fashion, we see πCk
=


0.6, k = 1

1.1, k = 2

1.7πCk−1
− 0.72πCk−2

, k ≥ 3
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2) Consider the model Z̃t = 0.3Z̃t−1+0.34Z̃t−2−0.12Z̃t−3+at−0.7at−1+0.12at−2.
Determine whether or not the model is in reduced form, and if it is not, find the
reduced form.

The model is in reduced form if the AR and MA polynomials share no common factors.
We go directly for the definition. The model is (1−0.3B−0.34B2+0.12B3)Z̃t = (1−0.7B+
0.2B2)at. The quadratic does not divide directly into the cubic, so we try to find shared
linear factors. The quadratic factors as (1 − 0.4B)(1 − 0.3B), so we try to find if either of
these divides into the cubic.

Upon conducting polynomial long-division with the (−0.4B+1) term, the quotient starts
with −0.3B2. The product of −0.3B2 and (−0.4B+1) is 0.12B3−0.3B2, which, upon being
subtracted from the dividend 0.12B3 + 0.34B2 − 0.3B + 1 is −0.04B2 − 0.3B + 1. The next
term in the quotient is then 0.1B, which leaves a remainder of −0.4B + 1; we can factor the
cubic as (1− 0.4B)(1 + 0.1B − 0.3B2).

So we have reduced the model to (1 + 0.1B − 0.3B2)Z̃t = (1 − 0.3B)at. A quick check
reveals that the remaining linear term does not factor into the quadratic. So the total reduced
model is Z̃t = 0.1Z̃t−1 + 0.3Z̃t−2 + at − 0.3at−1.
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3) Consider the model (1 − B)2Zt = (1 − 0.3B − 0.5B2)at.

a. Is the model for Zt a stationary model? Why or why not?

Zt is not stationary since it’s AR model has two roots the lie on the complex unit circle.

b. Is the model for Wt = (1 − B)2Zt a stationary model? Why or why not?

Wt is stationary since it is a finite MA model, and finite MA’s are always stationary.

c. Determine the autocorrelation function for Wt.

The autocovariance function is E(WtWt−k):

E(WtWt−k) =E ((at − 0.3at−1 − 0.5at−2)(at−k − 0.3at−k−1 − 0.5at−k−2))

=E(atat−k)− 0.3E(atat−k−1)− 0.5E(atat−k−2)

− 0.3E(at−1at−k) + 0.09E(at−1at−k−1) + 0.15E(at−1at−k−2)

− 0.5E(at−2at−k) + 0.15E(at−2at−k−1) + 0.25E(at−2at−k−2)

By the properties of white noise, E(atat−k) =

{
σ2
a, k = 0

0, k > 0
. So:

γ0 = σ2
a(1 + 0.09 + 0.25) = 1.34σ2

a

γ1 = σ2
a(−0.3 + 0.15) = −0.15σ2

a

γ2 = σ2
a(−0.5) = −0.5σ2

a

γ3 = σ2
a()

γ4 = 0

. Dividing by γ0 gives us the correlation function (here s > 2):

ρ0 = 1

ρ1 =
−0.15

1.34
≈ −0.11

ρ2 =
−0.5

1.34
≈ −0.37

ρs = 0
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2.4 Analyzing Datasets, White-Noise Tests, Forecasting

1) Analyze the third data set on Moodle.

a. Determine possible models for the data set using diagnostics such as the ACF,
PACF, and white noise test. Include a unit root test and discuss those results as
well. Include relevant plots and tables with your submission.

Our first step is to plot the data. We show it in Figure 2.1 below.

Figure 2.1: Posted Time Series Data

There is no obvious change in variance. The data may have some trending (e.g. from
time point 30 to 100), but it is not abundantly obvious either way. Additionally, there might
be some seasonality (the gaps between local peaks and valleys is approximately equal).

Before proceeding further, we should test if a model is needed in the first place (i.e. if
the series is just a random walk). We use the Ljung-Box Q Test in Figure 2.2 below at
lags of 6 and 12 to determine if a fit is needed. With p-values near machine-epsilon, we can
comfortably reject white-noise at any reasonable significance level α.

Figure 2.2: Ljung-Box Q Test For White Noise
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Now that we know we need to fit a model, we use R’s built in ACF() and PACF() functions
to get an idea of which models we want to try fitting. The code is shown in Figure 2.3 below.

Figure 2.3: R Code For ACF And PACF Functions

The plots in Figure 2.4 are the result. Notice how the ACF dies out slowly, while the
PACF seems to significantly cut off at the second lag; a natural choice for our model is an
AR(2). While that second lag has the largest partial autocorrelation, the PACF does not
completely die out. To account for the PACF’s reluctance to cut off, some type of ARIMA
model may be necessary.

Figure 2.4: Autocorrelation And Partial Autocorrelation Of Data

To test if a difference is needed, we use the Augmented Dickey-Fuller Test in Figure 2.5
below. Under a significance level of α = 0.05, we fail to reject the null hypothesis of “there
is a unit root” (p = 0.21). As such, we will fit ARIMA models in addition to our AR(2).

Figure 2.5: R Code For Augmented Dickey-Fuller Test
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b. Fit the models that you identified as good possibilities and compare their fits
using output diagnostics such as the residual test for white noise, AIC, SBC, etc.

After differencing the time series like indicated in the above, we see the following series.

Figure 2.6: Plot Of Differenced Time Series

At least visually, this series shows better signs of weak stationarity than our first plot.
Nevertheless we will proceed with our fitting of an AR(2) for comparison purposes.

The ACF and PACF for the residuals of the AR(2) model, plotted in Figure 2.7 still show
signs of a signal.

Figure 2.7: AR(2) Residual ACF and PACF

Our model diagnostics show that one cannot reject the presence of a signal at any sig-
nificance level greater than α = 0.01. The AIC for the model is about 314 while the BIC is
about 325. These results are shown in Figure 2.8 below.
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Figure 2.8: AR(2) Model Diagnostics

We can now try a variety of ARIMA models to see which one gives us the best fit. The
model diagnostics are shown in Figure 2.9. The best model, in terms of all three of AIC
(285.56), BIC (295.94), and Ljung-Box Q Test (p = 0.48), is an ARIMA(2,1,1) model.

Figure 2.9: ARIMA Model Diagnostics

We see the ACF and PACF of the residuals for our ARIMA(2,1,1) model in Figure 2.10.

Figure 2.10: ARIMA(2,1,1) Residual ACF

34



2.4 Analyzing Datasets, White-Noise Tests, Forecasting Flaherty, 35

c. Use your model to forecast the series 12 time units into the future.

In totality, our model is (1− 0.214B + 0.3056B2)(1−B)Zt = (1+ 0.6546)at. The results
come from the code in Figure 2.11 below.

Figure 2.11: Coefficients Of ARIMA(2,1,1) Model

We can forecast the next 12 time units into the future with R’s predict() function. The
101st value is predicted to be about 8.15, the 102nd value is predicted to be about 8.05, and
so on until the 112th value is predicted to be about 8.00.

Figure 2.12: Forecast Next 12 Values From ARIMA(2,1,1)
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2) Consider the AR(2) model (1 − 1.2B + 0.6B2)(Zt − 65) = at where σ2
a = 1

and we have the observations are Z76 = 60.4, Z77 = 58.9, Z78 = 64.7, Z79 =
70.4, and Z80 = 62.6.

a. Forecast Z81, Z82, Z83, and Z84.

We first write out the model as Zt = 65+1.2(Zt−1−65)−0.6(Zt−2−65)+at. Our forecast

for l steps in the future is: Ẑ80(l) = 65 + 1.2(Ẑ80+l−1 − 65)− 0.6(Ẑ80+l−2 − 65). Explicitly:

Ẑ80(1) = 65 + 1.2(62.6− 65)− 0.6(70.4− 65) = 58.88

Ẑ80(2) = 65 + 1.2(58.88− 65)− 0.6(62.6− 65) = 59.096

Ẑ80(3) = 65 + 1.2(59.096− 65)− 0.6(58.88− 65) = 61.5872

Ẑ80(4) = 65 + 1.2(61.5872− 65)− 0.6(59.096− 65) = 64.44704

b. Determine the 95% forecast limits for the forecasts in part a.

The standard error for our forecast is given by

√
l−1∑
j=0

ψ2
j . This follows from the fact that

V(en(l)) = σ2
a

l−1∑
j=0

ψ2
j and we are given σ2

a = σa = 1. The critical value is zα/2 which is the value

with α
2
of the mass of the standard normal distribution to it’s right (a choice of α = 0.05 yields

about 1.96). It remains to be seen what our ψ weights are from the MA representation of the
above model. We can write out our model as (1−1.2B+0.6B2)(1+ψ1B+ψ2B

2+ · · · )at = at.
Equating the B coefficients, we find (where n ≥ 3):

ψ1B − 1.2B = 0 =⇒ ψ1 = 1.2

ψ2B
2 − 1.2ψ1B

2 + 0.6B2 = 0 =⇒ ψ2 = 1.2(1.2)− 0.6 = 0.86

ψnB
n − 1.2ψn−1B

n + 0.6ψn−2B
n =⇒ ψn = 1.2ψn−1 − 0.6ψn−2

Then the forecast limits (point-estimate plus/minus margin of error) are approximately:

Ẑ80(1) : 58.88± 1.96

(
0∑
j=0

ψ2
j

)1/2

≈ 58.88± 1.96 (1)
1
2 ≈ (56.92, 60.84)

Ẑ80(2) : 59.10± 1.96

(
1∑
j=0

ψ2
j

)1/2

≈ 59.10± 1.96
(
12 + 1.22

) 1
2 ≈ (56.03, 62.16)

Ẑ80(3) : 61.59± 1.96

(
2∑
j=0

ψ2
j

)1/2

≈ 61.59± 1.96
(
12 + 1.22 + 0.862

) 1
2 ≈ (58.09, 65.08)

Ẑ80(4) : 64.45± 1.96

(
3∑
j=0

ψ2
j

)1/2

≈ 64.45± 1.96
(
12 + 1.22 + 0.862 + 0.3122

) 1
2 ≈ (60.90, 68.00)

36



2.4 Analyzing Datasets, White-Noise Tests, Forecasting Flaherty, 37

c. Suppose that the observations at t = 81 turns out to be Z81 = 62.2. Determine
the updated forecasts Z82 , Z83, and Z84.

We have:

Ẑ81(1) = Ẑ80(2) + ψ1

[
Z81 − Ẑ80(1)

]
= 59.096 + 1.2 [62.2− 58.88]

= 63.08

Ẑ81(2) = Ẑ80(3) + ψ2

[
Z81 − Ẑ80(1)

]
= 61.5872 + 0.86 [62.2− 58.88]

= 64.4424

Ẑ81(3) = Ẑ80(4) + ψ3

[
Z81 − Ẑ80(1)

]
= 64.44704 + 0.312 [62.2− 58.88]

= 65.48288
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3) A sales series was fitted by the ARIMA(2,1,0) model (1−0.14B+0.48B2)(1−
B)Zt = at where σ2

a = 58000 and the last three observations are Zn−2 = 640,
Zn−1 = 770, and Zn = 800.

a. Calculate the forecast of the next three observations.

We can write the model as (1 − 0.14B + 0.48B2 − B + 0.14B2 − 0.48B3)Zt = at or
equivalently Zt = 1.14Zt−1 − 0.62Zt−2 + 0.48Zt−3 + at. Our forecast for l steps in the future

is: Ẑn(l) = 1.14Ẑn+l−1 − 0.62Ẑn+l−2 + 0.48Ẑn+l−3. Explicitly:

Ẑn(1) = 1.14(800)− 0.62(770) + 0.48(640) = 741.8

Ẑn(2) = 1.14(741.8)− 0.62(800) + 0.48(770) = 719.252

Ẑn(3) = 1.14(719.252)− 0.62(741.8) + 0.48(800) = 744.0313

b. Calculate the 95% forecast limits for the forecasts in part a.

We know we can write (1 − 1.14B + 0.62B2 − 048B3)Zt = at. Writing Zt in terms of
it’s AR representation, we have (1− 1.14B + 0.62B2 − 048B3)(1 + ψ1B + ψ2B

2 + · · · ) = at.
Equating coefficients of B, we arrive at our AR coefficients. We have:

ψ1B − 1.14B = 0 =⇒ ψ1 = 1.14

ψ2B
2 − 1.14ψ1B

2 + 0.62B2 = 0 =⇒ ψ2 = 1.14(1.14)− 0.62 = 0.6796

ψ3B
3 − 1.14ψ2B

3 + 0.62ψ1B
3 − 0.48B3 = 0 =⇒ ψ3 = 1.14(0.6796) + 0.62(1.14) + 0.48 = 1.961544

Since V(en(l)) = σ2
a

l−1∑
j=0

ψ2
j and we are given σ2

a = 58000, our standard error is 240.8319

(
l−1∑
j=0

ψ2
j

) 1
2

.

As such, our forecast limits are approximately:

Ẑn(1) : 741.8± (1.96)240.8

(
0∑
j=0

ψ2
j

) 1
2

≈ 741.8± 471.97
(
12
) 1

2 ≈ (269.83, 1213.77)

Ẑn(2) : 719.25± (1.96)240.8

(
1∑
j=0

ψ2
j

) 1
2

≈ 719.25± 471.97
(
12 + 1.142

) 1
2 ≈ (3.54, 1434.96)

Ẑn(3) : 744.03± (1.96)240.8

(
2∑
j=0

ψ2
j

) 1
2

≈ 744.03± 471.97
(
12 + 1.142 + 0.67962

) 1
2 ≈ (−40.27, 1528.33)
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2.5 Model Diagnostics, ARIMA Models, Unit Root Tests

1) Analyze the fourth data set on Moodle.

a. Determine possible models for the data set using diagnostics such as the ACF,
PACF, and white noise test. Include a unit root test and discuss those results as
well.

Our first step is to plot the data, which we do in Figure 2.13 below.

Figure 2.13: Data Set 4 Time Series

The Ljung-Box White Noise test has a p-value on the order of machine-epsilon for lags
of 6 and 12 (see Figure 2.14 below)– we need to fit a model.

Figure 2.14: White Noise Test For Data Set 4

The Augmented-Dickey Fuller test in Figure 2.15 suggests that we might need to take a
difference.

Figure 2.15: Augmented-Dickey Fuller Test (Unit Root Test)
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After doing so, our ACF and PACF for the differenced data are shown in Figure 2.16.
Notice that neither the ACF nor PACF seems to completely die off.

Figure 2.16: ACF And PACF Of Differenced Data

Again performing the white-noise test, this time on the differenced series, we see that the
model is not distinguishable from white noise in Figure 2.17.

Figure 2.17: White Noise Test For Differenced Data

Our assessment of the model agrees with the auto.arima() function from R’s forecast
package; it recommends an ARIMA(0,1,0) model.

Figure 2.18: auto.arima() For Data Set 4
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b. Fit the models that you identified as good possibilities and compare their fits
using output diagnostics such as the residual test for white noise, AIC, SBC, etc.

Just for thoroughness, we test a few different models up to order 3 in Figure 2.19.

Figure 2.19: R Code To Derive Model Diagnostics

Figure 2.20 below sorts our diagnostics from lowest to highest AIC values.

Figure 2.20: Model Diagnostics For Data Set 4
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In terms of AIC, the ARIMA(0,1,0) is actually one of the worst performing models. If
one model had to be chosen, we would prefer the ARIMA(1,0,0) for the sake of parsimony.
It is only slightly worse than the ARIMA(1,1,1) model (the combined difference in AIC and
BIC in the two models is less than 0.5) while having a higher Ljung-Box p-value and two less
parameters.
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2) Analyze the quarterly beer data set on Moodle.

a. Determine possible models for the data using diagnostics such as the ACF
and white noise test. Include a unit root test and discuss those results as well.

Our first step is to plot the data, which we do in Figure 2.21 below.

Figure 2.21: Quarterly Beer Time Series

It is clear from inspection that we have seasonal data with period 4. We are dealing with
a limited amount of data (thirty-two total observations with a period of 4 means 8 seasonal
observations), but at least visually, it seems that the series is trending; all but one of the
seven points is larger than it’s previous value. Applying the Augmented Dickey-Fuller Test
at seasonal increments provides evidence for the alternative hypothesis that the seasonal lags
are actually stationary. This is shown in Figure 2.22 below along with the differenced plot.
We will test both when building our models.

Figure 2.22: Quarterly Beer Time Series After Seasonal Difference
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Our initial ACF and PACF plots are shown in Figure 2.23 below. The seasonal lags in the
ACF plot seem to quickly die out while the first seasonal lag in the PACF seems pronounced
and subsequently cuts off. A natural choice for the seasonal portion of the model is an MA(1).

Figure 2.23: ACF And PACF Of Quarterly Beer

We can also look at the ACF and PACF after taking a seasonal difference. This is shown
in Figure 2.24. Notice that the ACF has a semi-gradual sinusoidal decay, and the PACF cuts
off after the first seasonal lag. An argument could be made that neigher really cuts off but
instead gradually decays. From that perspective, some choices for the seasonal portion could
be an ARIMA(1,1,0), and ARIMA(0,1,1), or an ARIMA(1,1,1)

Figure 2.24: ACF And PACF After Seasonal Difference
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We now try to determine the non-seasonal part of the model. We can test if a difference
is needed by using the Augmented Dickey-Fuller test. Under any reasonable alpha level, we
fail to reject the null hypothesis of ”there is a unit root”. The results are shown in Figure
2.25 below.

Figure 2.25: ADF For Beer Data

The ACF and PACF, after taking a difference, are shown in Figure 2.26 below. Notice
that the ACF dies out immediately, while the PACF cuts off after the third lag.

Figure 2.26: ACF And PACF After Regular Difference

Taken together, we have a couple of models that might be good fits: an ARIMA(0,1,3)(0,0,1),
an ARIMA(0,1,3)(1,1,0), an ARIMA(0,1,3)(0,1,1), and an ARIMA(0,1,3)(1,1,1) all seem rea-
sonable.
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b. Fit the models that you identified as good possibilities and compare their fits
using output diagnostics such as the residual test for white noise, AIC, SBC, etc.

For thoroughness, we test all models with p, q, P, and Q terms less than 4 with d and D
terms less than 2. The script to run this is shown in Figure 2.27 below.

Figure 2.27: Script For Fitting Models

The top ten models in terms of AIC are shown in Figure 2.28 below. Of the models
we planned to test in part 2a, the ARIMA(0,1,3)(1,1,1) actually was the second best model
overall. Right behind was our ARIMA(0,1,3)(0,1,1) model. Since the data was so short, the
marginally better AIC and BIC from the model with a second seasonal MA term is not as
convincing as the ARIMA(0,1,3)(1,1,1) we proposed. For that reason, we would prefer that
model best of all.

Figure 2.28: Model Selection Criteria For Beer Data
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3 Appendix

3.1 Problem Set 1
####################Problem Set 1####################

ar_coeffs=c(1.2, -.8) #Z_t=1.2Z_{t-1}-0.8Z_{t-2}+a_t#

round(ARMAacf(ar=ar_coeffs, lag.max=5),3)

ar_coeffs=c(0.6,-.68, .24) #Z_t=0.6Z_{t-1}-0.68Z_{t-2}+0.24Z_{t-3}+a_t#

round(ARMAacf(ar=ar_coeffs, lag.max=5),3)

ar_coeff=.5 #Z_t=0.5Z_{t-1}+a_t#

round(ARMAacf(ar=ar_coeff),3)

ARMAacf(ar=ar_coeff, lag.max=3, pacf=TRUE)

ar_coeff=c(1.3, -.4)

round(ARMAacf(ar=ar_coeff, lag.max=5),3)

round(ARMAacf(ar=ar_coeff, lag.max=5, pacf=TRUE),3)

ar_coeff=c(1.2, -.8)

round(ARMAacf(ar=ar_coeff, lag.max=5),3)

round(ARMAacf(ar=ar_coeff, lag.max=5, pacf=TRUE),3)

coef=c(1,-.2,-.4)

polyroot(coef)
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3.2 Problem Set 2
####################Problem Set 2####################

#####1. Load Required Packages#####

library(stats)

#####2. Specify Parameters#####

length1=50

length2=1000

burnin=101

#m1=a_t+0.5a_{t-1}+0.24a_{t-2}#

m1coefma=c(0.5, 0.24) #ARIMA(0,0,2) process#

#m2=0.8Z_{t-1}+a_t-0.3a_{t-1}#

m2coefma=-0.3

m2coefar=0.8 #ARIMA(1,0,1) process#

#####3. Specify Models#####

set.seed(534) #To make reproducible#

m1_short=arima.sim(model=list(ma=m1coefma),

n=length1,

n.start=burn)

m1_long=arima.sim(model=list(ma=m1coef),

n=length2,

n.start=burn)

m2_short=arima.sim(model=list(ar=m2coefar, ma=m2coefma),

n=length1,

n.start=burn)

m2_long=arima.sim(model=list(ar=m2coefar, ma=m2coefma),

n=length2,

n.start=burn)

#####4. Plot Results Along With ACF and PACF#####

###4a. ARIMA(0,0,2) short###

layout(matrix(c(1,1,2,3), nrow=2, ncol=2, byrow=TRUE))

plot(m1_short,

main=bquote(atop(

paste("Simulated ARIMA(0,0,2) Of Length ", .(length1)),

paste(psi[1], "=", .(m1coefma[1]), ", ", psi[2], "=", .(m1coefma[2])))),

xlab="Time",

ylab="Value",

lwd=2,

lty=1,

col="blue")

m1_shortacf=acf(m1_short, lag.max=40,

main=paste0("ARIMA(0,0,2) Of Length ", length1, "\n", "Estimated ACF"),

ci.col="blue",

col="blue",

lwd=2)

m1_shortacf

m1_shortpacf=pacf(m1_short, lag.max=40,

main=paste0("ARIMA(0,0,2) Of Length ", length1, "\n", "Estimated PACF"),

ci.col="blue",

col="blue",

lwd=2)

m1_shortpacf
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###4b. ARIMA(0,0,2) long###

layout(matrix(c(1,1,2,3), nrow=2, ncol=2, byrow=TRUE))

plot(m1_long,

main=bquote(atop(

paste("Simulated ARIMA(0,0,2) Of Length ", .(length2)),

paste(psi[1], "=", .(m1coefma[1]), ", ", psi[2], "=", .(m1coefma[2])))),

xlab="Time",

ylab="Value",

lwd=2,

lty=1,

col="red")

m1_longacf=acf(m1_long, lag.max=40,

main=paste0("ARIMA(0,0,2) Of Length ", length2, "\n", "Estimated ACF"),

ci.col="blue",

col="red",

lwd=2)

m1_longacf

m1_longpacf=pacf(m1_long, lag.max=40,

main=paste0("ARIMA(0,0,2) Of Length ", length2, "\n", "Estimated PACF"),

ci.col="blue",

col="red",

lwd=2)

m1_longpacf

###4c. ARIMA(1,0,1) Short###

layout(matrix(c(1,1,2,3), nrow=2, ncol=2, byrow=TRUE))

plot(m2_short,

main=bquote(atop(

paste("Simulated ARIMA(1,0,1) Of Length ", .(length1)),

paste(pi[1], "=", .(m2coefar[1]), ", ", psi[1], "=", .(m2coefma[1])))),

xlab="Time",

ylab="Value",

lwd=2,

lty=1,

col="seagreen4")

m2_shortacf=acf(m2_short, lag.max=40,

main=paste0("ARIMA(1,0,1) Of Length ", length1, "\n", "Estimated ACF"),

ci.col="blue",

col="seagreen4",

lwd=2)

m2_shortacf

m2_shortpacf=pacf(m2_short, lag.max=40,

main=paste0("ARIMA(1,0,1) Of Length ", length1, "\n", "Estimated PACF"),

ci.col="blue",

col="seagreen4",

lwd=2)

m2_shortpacf

###4d. ARIMA(1,0,1) long###

plot(m2_long,

main=bquote(atop(

paste("Simulated ARIMA(1,0,1) Of Length ", .(length2)),

paste(pi[1], "=", .(m2coefar[1]), ", ", psi[1], "=", .(m2coefma[1])))),

xlab="Time",

ylab="Value",

lwd=2,
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lty=1,

col="purple")

m2_longacf=acf(m2_long, lag.max=40,

main=paste0("ARIMA(1,0,1) Of Length ", length2, "\n", "Estimated ACF"),

ci.col="blue",

col="purple",

lwd=2)

m2_longacf

m2_longpacf=pacf(m2_long, lag.max=40,

main=paste0("ARIMA(1,0,1) Of Length ", length2, "\n", "Estimated PACF"),

ci.col="blue",

col="purple",

lwd=2)

m2_longpacf

######5. Theoretical P/ACF######

macoef=c(.5,.24)

ma2acf=round(ARMAacf(ma=macoef, lag.max=10),2)

ma2pacf=round(ARMAacf(ma=macoef, lag.max=10, pacf=TRUE),2)

ma2acf

ma2pacf

ARmacoef=0.8

arMAcoef=-0.3

arma11acf=round(ARMAacf(ar=ARmacoef, ma=arMAcoef, lag.max=10),2)

arma11pacf=round(ARMAacf(ar=ARmacoef, ma=arMAcoef, lag.max=10, pacf=TRUE),2)

arma11acf

arma11pacf

######6. Comparison#####

acf_comparison=data.frame(

mylag=1:10,

Estimated_MA_50=as.numeric(m1_shortacf[1:10]$acf),

Estimaged_MA_1000=as.numeric(m1_longacf[1:10]$acf),

Theoretical_MA=as.numeric(ma2acf[2:11]),

Estimated_ARMA_50=as.numeric(m2_shortacf[1:10]$acf),

Estimaged_ARMA_1000=as.numeric(m2_longacf[1:10]$acf),

Theoretical_ARMA=as.numeric(arma11acf[2:11])

)

round(acf_comparison,4)
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3.3 Problem Set 4

####################Problem Set 4####################

#####1. Load Required Packages#####

library(stats)

library(tseries)

path="Academics/Class/Problem Set/Problem Set 4/Data3.csv"

data3=read.csv(path)

summary(data3)

str(data3)

ts_data3=ts(data3$Val) #Convert from DF to Time Series Object#

###1a. EDA###

plot(data3,

type="l",

lwd="2",

col="blue",

main="Data Set 3",

xlab="Time",

ylab="Value")

whitenoise6=Box.test(ts_data3, #Do we need to fit model?#

lag=6,

type="Ljung-Box")

whitenoise6 #p small \implies yes#

whitenoise12=Box.test(ts_data3,

lag=12,

type="Ljung-Box")

whitenoise12

###1b. Plot ACF and PACF###

length2=nrow(data3)

par(mfrow=c(1,2))

data3_acf=acf(ts_data3, lag.max=40,

main=paste0("Time Series Data Of Length ", length2, "\n", "Estimated ACF"),

ci.col="blue",

col="red",

lwd=4)

data3_acf #ACF dies out slowly#

data3_pacf=pacf(ts_data3, lag.max=40,

main=paste0("Time Series Data Of Length ", length2, "\n", "Estimated PACF"),

ci.col="blue",

col="red",

lwd=4)

data3_pacf #PACF cuts off at lag 2#

###1c. Augmented Dickey-Fuller (Unit Root Test)###

adf_result=adf.test(ts_data3) #Null is that there is a root#

adf_result #since p is 0.2, don’t reject null; assume non-stationary#

diff_data3=diff(ts_data3, differences = 1)

par(mfrow=c(1,1))

plot(diff_data3,

main="Differenced Data",

xlab="Time",

ylab="Value",

col="black",
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lwd=2)

par(mfrow=c(1,2))

data3diff_acf=acf(diff_data3, lag.max=40,

main=paste0("Differenced Time Series Data Of Length ", length2-1, "\n", "Estimated ACF"),

ci.col="blue",

col="red",

lwd=4)

data3diff_acf #ACF dies out slowly#

data3diff_pacf=pacf(diff_data3, lag.max=40,

main=paste0("Differenced Time Series Data Of Length ", length2-1, "\n", "Estimated PACF"),

ci.col="blue",

col="red",

lwd=4)

data3diff_pacf

###1d. Fitting Models###

#AR(2)#

ar2=arima(ts_data3, order=c(2,0,0))

summary(ar2)

resid_ar2=residuals(ar2)

acf(resid_ar2,

main="AR(2) Residual ACF",

col="red",

lwd=4)

pacf(resid_ar2,

main="AR(2) Residual PACF",

col="red",

lwd=4)

AIC(ar2)

BIC(ar2)

resid_ar2=residuals(ar2)

result_ar2=Box.test(resid_ar2, lag=20, type="Ljung-Box")

result_ar2 #p-value still low \implies need to fit more#

#ARIMA Model Diagnostics#

ARIMA_model=vector()

aic=vector()

bic=vector()

LBtest=vector()

for (p in 1:3) {

for (q in 1:3) {

model=arima(ts_data3, order=c(p-1,1,q-1))

resid=residuals(model)

ARIMA_model[3*(p-1)+q]=paste0("ARIMA(", p-1, ",1,", q-1, ")")

aic[3*(p-1)+q]=round(AIC(model),2)

bic[3*(p-1)+q]=round(BIC(model),2)

LBtest[3*(p-1)+q]=round(Box.test(resid, lag=21, type="Ljung-Box")$p.value,2)

}

}

df=data.frame(ARIMA_model, aic, bic, LBtest)

df

#ARIMA(2,1,1)#

arima211=arima(ts_data3, order=c(2,1,1))

summary(arima211)
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resid_arima211=residuals(arima211)

acf(resid_arima211,

main="ARIMA(2,1,1) Residual ACF",

col="red",

lwd=4)

pacf(resid_arima211,

main="ARIMA(2,1,1) Residual PACF",

col="red",

lwd=4)

###1e. Forecast###

pred=predict(arima211, n.ahead = 12)

pred

#####2. Problem 2#####

alpha=0.05 #given#

qnorm(alpha/2, lower.tail=FALSE) #critical value#
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3.4 Problem Set 5

####################Problem Set 5####################

#####1. Load Required Packages#####

library(tidyverse)

library(stats)

library(tseries)

library(forecast)

path="Academics/ST534 Time Series/Homework/Homework 5/"

data4=read.csv(paste0(path, "data4.csv"))

summary(data4)

str(data4)

ts_data4=ts(data4$data) #Convert from DF to Time Series Object#

n_data4=nrow(data4)

auto.arima(ts_data4) #to give us an idea what to search for#

beer=read.csv(paste0(path, "beer.csv")) |>

mutate(yyyyq=paste0(year, "-", quarter))|>

select(yyyyq, data)

summary(beer)

str(beer)

ts_beer=ts(beer$data) #Convert from DF to Time Series Object#

n_beer=nrow(beer)

auto.arima(ts_beer) #to give us an idea what to search for#

s=4 #The seasonality#

#####2. Data4#####

###2a. Plot Data (Ljung-Box says fit model)###

par(mfrow=c(1,1))

plot(data4,

type="l",

lwd="2",

col="blue",

main="Data Set 4",

xlab="Time",

ylab="Value")

whitenoise6=Box.test(ts_data4, #Do we need to fit model?#

lag=6,

type="Ljung-Box")

whitenoise6 #p small \implies yes#

whitenoise12=Box.test(ts_data4,

lag=12,

type="Ljung-Box")

whitenoise12

###2b. Augmented Dickey-Fuller (Unit Root Test)###

adf_result_data4=adf.test(ts_data4) #Null is that there is a root#

adf_result_data4 #since p is 0.2, don’t reject null; assume non-stationary#

diff_data4=diff(ts_data4, differences = 1)

par(mfrow=c(1,1))

plot(diff_data4,

main="Differenced Data",

xlab="Time",

ylab="Value",
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col="black",

lwd=2)

par(mfrow=c(1,2))

data4diff_acf=acf(diff_data4, lag.max=40,

main=paste0("Differenced Time Series Data Of Length ", n_data4-1, "\n", "Estimated ACF"),

ci.col="blue",

col="red",

lwd=4)

data4diff_acf #ACF refuses to die#

data4diff_pacf=pacf(diff_data4, lag.max=40,

main=paste0("Differenced Time Series Data Of Length ", n_data4-1, "\n", "Estimated PACF"),

ci.col="blue",

col="red",

lwd=4)

data4diff_pacf #PACF also refuses to die#

whitenoise6=Box.test(diff_data4, #Do we need to fit model?#

lag=6,

type="Ljung-Box")

whitenoise6 #large p \implies no#

whitenoise12=Box.test(diff_data4, #Do we need to fit model?#

lag=12,

type="Ljung-Box")

whitenoise12 #large p \implies no#

###2c. Plot ACF and PACF###

par(mfrow=c(1,2))

data4_acf=acf(ts_data4, lag.max=40,

main=paste0("Time Series Data Of Length ", n_data4, "\n", "Estimated ACF"),

ci.col="blue",

col="red",

lwd=4)

data4_acf #ACF dies out slowly#

data4_pacf=pacf(ts_data4, lag.max=40,

main=paste0("Time Series Data Of Length ", n_data4, "\n", "Estimated PACF"),

ci.col="blue",

col="red",

lwd=4)

data4_pacf #PACF cuts off at lag 2#

###2d. Try A Few Different Models###

ARIMA_model=vector()

aic=vector()

bic=vector()

LBtest=vector()

for (p in 1:4) {

for (d in 1:2) {

for (q in 1:4) {

model=arima(ts_data4,

order=c(p-1,d-1,q-1))

resid=residuals(model)

ARIMA_model[4*2*(p-1)+4*(d-1)+q]=paste0("ARIMA(", p-1, ",", d-1, ",", q-1, ")")

aic[4*2*(p-1)+4*(d-1)+q]=round(AIC(model),2)

bic[4*2*(p-1)+4*(d-1)+q]=round(BIC(model),2)

LBtest[4*2*(p-1)+4*(d-1)+q]=round(Box.test(resid, lag=21, type="Ljung-Box")$p.value,2)

}

}

55



3.4 Problem Set 5 Flaherty, 56

}

df=data.frame(ARIMA_model, aic, bic, LBtest)

df=df[order(df$aic),]

df

#####3. Beer#####

###3a. Plot Data (Ljung-Box says fit model)###

par(mfrow=c(1,1))

plot(y=beer$data,

x=1:length(beer$yyyyq),

type="l",

lwd=2,

col="blue",

main="Quarterly Beer Production",

xlab="Time",

ylab="Value",

xaxt="n")

axis(1,

at=seq(1, length(beer$yyyyq), 4),

labels=beer$yyyyq[seq(1, length(beer$yyyyq), 4)],

las=1)

whitenoise6_beer=Box.test(ts_beer, #Do we need to fit model?#

lag=6,

type="Ljung-Box")

whitenoise6_beer #p small \implies yes#

whitenoise12_beer=Box.test(ts_beer,

lag=12,

type="Ljung-Box")

whitenoise12_beer

###3b. Augmented Dickey-Fuller (Unit Root Test) For Seasonal Part###

ts_beer_seasonal=ts_beer[seq(2, length(ts_beer), by=4)] #Only look at every 4th#

sadf_result=suppressWarnings(adf.test(ts_beer_seasonal))

sadf_result

#technically stationary from test, but visually, looks trending#

ts_beer_sdiff=diff(ts_beer, lag = 4)

plot(y=ts_beer_sdiff,

x=1:28,

type="l",

lwd=2,

col="blue",

main="Quarterly Beer Production After Seasonal Difference",

xlab="Time",

ylab="Value",

xaxt="n")

###3c. ACF and PACF###

par(mfrow=c(1,2))

beer_acf=acf(ts_beer, lag.max=40,

main=paste0("Time Series Data Of Length ", n_beer, "\n", "Estimated ACF"),

ci.col="blue",

col="red",
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lwd=4)

beer_acf #ACF dies out slowly at seasonal lags#

beer_pacf=pacf(ts_beer, lag.max=40,

main=paste0("Time Series Data Of Length ", n_beer, "\n", "Estimated PACF"),

ci.col="blue",

col="red",

lwd=4)

beer_pacf #PACF cuts off at seasonal lag 1#

#try with the seasonal difference#

par(mfrow=c(1,2))

beer_sacf=acf(ts_beer_sdiff, lag.max=40,

main=paste0("ACF After Seasonal Difference"),

ci.col="blue",

col="red",

lwd=4)

beer_sacf #ACF dies out slowly#

beer_spacf=pacf(ts_beer, lag.max=40,

main=paste0("PACF After Seasonal Difference"),

ci.col="blue",

col="red",

lwd=4)

beer_spacf #PACF cuts off at lag 2#

###3d. Regular ARIMA Components###

adf_result_beer=adf.test(ts_beer)

adf_result_beer #large p implies take difference#

ts_beer1=diff(ts_beer, lag=1)

###3e. Look at ACF PACF after lag 1 difference###

beer_acf1=acf(ts_beer1, lag.max=40,

main=paste0("ACF After Regular Difference"),

ci.col="blue",

col="red",

lwd=4)

beer_acf1 #ACF dies out slowly at seasonal lags#

beer_pacf1=pacf(ts_beer, lag.max=40,

main=paste0("PACF After Regular Difference"),

ci.col="blue",

col="red",

lwd=4)

beer_pacf1 #PACF cuts off at seasonal lag 1#

###3f. Try A Few Different Models###

ARIMAs_model=vector()

aic=vector()

bic=vector()

LBtest=vector()

s=4 #clear from data#

for (p in 1:4) {

for (d in 1:2) {

for (q in 1:4) {

for (P in 1:4) {
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for (D in 1:2) {

for (Q in 1:4) {

mycount=(((((p-1)*2 + (d-1))*4 + (q-1))*4 + (P-1))*2 + (D-1))*4 + Q

mymodel=paste0("ARIMA(", p-1, ",", d-1, ",", q-1, ")(", P-1, ",", D-1, ",", Q-1, ")",s)

tryCatch({

model=arima(ts_beer,

order=c(p-1,d-1,q-1),

seasonal=list(order=c(P-1,D-1,Q-1), period=s))

resid=residuals(model)

ARIMAs_model[mycount]=mymodel

aic[mycount]=round(AIC(model),2)

bic[mycount]=round(BIC(model),2)

LBtest[mycount]=round(Box.test(resid, lag=21, type="Ljung-Box")$p.value,2)

}, error=function(e) {

ARIMAs_model[mycount]=mymodel

aic[mycount]=999

bic[mycount]=999

LBtest[mycount]=999

})

}

}

}

}

}

}

df=data.frame(ARIMAs_model, aic, bic, LBtest)

df=df[order(df$aic),]

df
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