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1 Scalar, Vector, And Matrix Multiplication

Problem 1.1) Suppose Az = Ay = 0 for A € R™*" and «,y € R". Combine the
two statements into a single equation AB = C that is equivalent to the above.
Determine B and C, and specify their dimensions.

Consider B = [r y] € R™? (and thus C' = (0 € R™*?).

First assume Ax = Ay = 0. Right-multiplying A by B gives a linear combination of the
columns; AB = [AB.1 AB.s] = [Ar Ay] = [00] e R™% Ar = Ay=0 = AB=C.

Next assume AB = C' = 0 € R™*2, Since a matrix is zero only when all its entries are
zero, and we showed above that AB = [Az Ay|, we must have Ax = 0 and Ay = 0. This
proves the equivalence.

Problem 1.2) Determine the column vectors u and w such that [_12 _22 _42] =
uw?T and u is equal to the second column of the matrix.
) — -1 5 1 -2 =2
We are given u= 9 and want to find w such that s W=y o 4|7 A. One

way to look at this is to find the scalar multiples of v that form the columns of A. The first

column of A is Ay 1= — u, Ago=u, and A, 3=2u. So wl'=[-11 2] and we have u = [_21]

Problem 1.3) For z € R™ and y € R'*", show how to compute (zy)3z using only
inner products and scalar multiplications.

Write (zy)*z = (zy)(zy)(zy)r = x(yz)(yz)(yxr)x = z(yx)® by the associativity of matrix

multiplication. Since y € R™" and z € R yr = Y y;121; = r € R; it is an inner
=1
3

n
product. Using scalar multiplication, we can compute (yx)3 = r® = <Z Yirx1; | - Then,
i=1

3

‘:T?’

since scalar quantities commute with matrices, we can write xr r = (yr)3x and perform
element-wise scalar multiplication on the elements of x with the quantity (yx)® to get our
desired computation.
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Problem 1.4) 4) Let x;,...,%,,a € R? be vectors, and define the matrix C =
> (z; — a)(z; — a)*. Derive the expression C = (X — al?)(X — al”)T where 1
j=1

is the vector of all ones, and X &€ R%x™,

Consider X = [z1 22 -+ 2] € R¥". Since X € R¥™" we must have al? € R¥>" as
well, and then since a € R™!, we must have 17 € R,

Let (z;); denote the i element of the column vector z;. Similarly let a; denote the i
element of the column vector a.

T

(zj)h1 —ar] [(zj)1 —a
For notational ease, label (x; —a)(z; —a)T = (xj)zz_ 2 (Ij)zz_ @2 = vl = M;.

(@))a —aa)  L(zj)a— a4

Now observe:

C=(X—al")(X —al”)"
(- -

— {(xl —a) (v —a) (l‘ni— @)] Fg : Z; 2]

)

L len)
€Rdxn -—
eRnxd
é((ﬂ“])l —a1)((r)1 — a1) zijl((r])l —ar)((zj)2 —ag) -+~ Z:((xﬂ)l —a1)((j)a — aq)
_ | (@ el — ) () = o) —aa) oo (o) = el = 0
é((%)d — aq)((#;)1 — a) Zn:((ﬁj)d —aq)((z))2 —as) - : ((zj)a — aa)((zj)a — aa)

3

((75)2 —a2)((x )1 —ay) ((zj)2 —a2)((x;)2 —az) -+ ((

1 —a1)((z5)a — aa)
) )]

1

J

{((%’)1 —a1)((25)1 — @) (E%)l —a1)((z;)2 —az) -+ ((z

(@50 — a0 (@)1 — 1) ((@5)a — a0 ()2 — az) - (30 — aa) (23)a — aa)

n n

M; = ZU]]T:Z 4—a)(:p]~—a)T

1 7j=1

3

J
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Problem 1.5) For z; € R, 1 < j < 4, determine the matrix Z that produces the

a1
transformation Z {%g} = [%ﬂ and represent Z as a sum of outer products.
Ty
1000 1 0 0
Z = {0010] = M 1000 + H 0010 + M 000 1]
0001 0 0 1

Problem 1.6) Let A € R™*™ be a matrix with A + %A3 + %AE’ = I. Is A singular
or nonsingular?

A is nonsingular. See that A(J + 5A? + $A*) = I by the distributive laws and so (by the
uniqueness of inverses), A~ = (I 4+ $A? + £ A*), which is well defined because A is square.

Problem 1.7) For the matrix B = I — v(wTv) " 1w? € R™*™ where v,w € R™ with
wTv # 0, present a derivation for B2.

We have:
B* = (I —v(w"v) 'w") (I —v(w"v) 'w") Definition
=1 —2v(whv) 'w? + v(wv) rwlv(wTv) T Expanding
=1 —2v(w'v) '’ + v ) (whv) (whv) e Grouping
=1 —2v(w'v) '’ +v(wv) tw’ Properties of inverses
=1 —v(wv) tw” Simplifying
=B B is idempotent

Problem 1.8) Show that an upper triangular orthogonal matrix must be diagonal.

Let A be both upper triangular and orthogonal. As A is upper triangular, AT is lower
triangular, i.e. Agj = ( for all ¢ < j. On the other hand, A™! is also upper triangular, i.e.
A;} =0 for all i > j. Combined with the fact that A is orthogonal, i.e. A™' = AT, we must

have A} ]-1 = Agj = 0 whenever i # j. This is precisely the definition of a diagonal matrix.

Problem 1.9) Let X = [b---b] € R™*™ where b € R™. Present a derivation to
—_————

n times
determine a simple expression for X X7.

Call b; the i*" element of b. Then:

b2  nbiby --- nbib
b - b by - b, 1oy 102 10m

X ! ] ! ] N ]
b =oe b b1 -2 b nbyby nbiby -+ 1b2,
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Problem 1.10) For vectors x,y € R show that 2Ty = 1(|lz + y||2 — ||z — y||2).

First, recall that for any vector a € R", ||a||? = a”

a,b € R, a’b = bl a.

a. Next, recall that for any vectors

Proceeding to the problem at hand, we can write:

2 +yll; = (z +9)" (z +y) First note above
= (" +y")(z+y) Transpose rules
=ar+a"y+yTe+yy Distributing
= |lz|5 + 2"y + vy "z + ||yll3 First note above
= [|lz[j3 + ly[|3 + 22"y Second note above

And similarly:

lz =yl = (= —y)"(z —y) First note above
= (2" —y")(z —y) Transpose rules
=z"e—a2Ty—yTx+yly Distributing
=|lzl5 — 2"y —y "z + |ly|3 First note above
= [|=]3 + [yl — 227y Second note above

Then (= + yllf — llz = yl3) = (=I5 + lyll3 + 227y) — (=13 + [yl — 227y) = 4aTy.
Dividing through by 4, we reach our result.
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2 Floating Point Arithmetic

Problem 2.1) The expressions 2712 and 5555 are equal in exact arithmetic. Ex-

plain precisely what happens when they are evaluated in IEEE double precision
floating point arithmetic (in MATLAB), and why.

We first note that the normalized double-precision floating point of a number is given
by (—1)%(1.f)22¢710% where s is allocated 1 bit, f is allocated 52 bits, and e is allocated 11
bits. Since e is allocated 11 bits, (and since cases of all “1”’s or all “0”’s are reserved for
special values), the total exponent after including the bias is minimally 1—1023 = —1022 and

maximally (2''—1—1)—1023 = 1023. Thus, realmin = 271922 and realmax < 2.2102% = 21024
(the smallest and largest normalized representation of numbers, respectively).

In the case of gz, MATLAB first computes 2'°*, and then takes the reciprocal of the
result. But since 21°?* > realmax by the above explanation, 2!9% results in overflow and

evaluates as Inf. In contrast to NaN, operations with Inf can still result in real numbers in
MATLAB. We see that here, as 21% is interpreted as 1/Inf = 0 exactly.

1024 "since |eps(0) = (0.0...01),2710%2| < 271921 < realmin, the eval-

51 times
uation of results in gradual underflow. It is therefore represented as a denormalized

number (i.e., without the leading ”1” bit preceding f), and is not exactly zero.

In the case of 2~

2—1024

>» 2+1024
dns =

Inf
>> 1/(271024)

dns =

>> 2~ (-1024)
ans =

5.5627e-308

Figure 2.1: MATLAB Output
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Problem 2.2) Determine the exact values of x and xp1, in terms of powers of two,
at the termination of the MATLAB algorithm below. Explain the purpose of the
algorithm.

x =1;

xpl=x + 1;

while xpl > 1

x=x/2;

xpl=x+1;

end

x=2X

At termination, x is machine epsilon (it is x ~ eps = 27°?), and xp1 is exactly 1 + ==

(but 1 in floating point). Apparently, the purpose of this algorithm is to determine the order
of values of y such that the computer cannot distinguish 1 from 1 + y.

Since multiplying normalized floating point numbers by powers of two results in exact
values, the while loop stores a repeatedly smaller exact value. The loop simply divides x by
2 after each iteration, so the fractional part of the number does not change and there are no
roundoff errors. Before the while loop begins, z = (—1)°(1.0...0)y = 21927102 = 20 4fter

52 times
the first loop, x = 271, after the second loop, x = 272, etc.

This process continues for an long as the computer evaluates xpl = 142" (for n € N) as
strictly greater than 1. By the definition of machine epsilon, eps is the next largest floating
point number after 1, and so the computer cannot store distinct floating point numbers
between 1 and 1 + eps. As such, after the 53 iteration of the while loop, the process
is exited; the computer evaluates 1 4+ 275 as equal to 1. After multiplying x by 2 at the
conclusion of the loop, we reach the aforementioned result.
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Problem 2.3) Determine the quantities f and e in the normalized representation
of the number 33, then determine the distance of 33 to the next larger floating
point number.

We know we can write 33 = (—1)*(1.f), - 2°7'923 where the sign s is allocated 1 bit, the
fraction f is 52 binary bits, and the (biased) exponent e is 11 binary bits. Since 33 is positive,
s =0.

To get the approximate magnitude of the number, we note that 2° = 32 < 33, so our
unbiased exponent should be 5, and thus e = 1028 in decimal (and so 10---0100 in binary).

7 times

We then scale the magnitude with the significant (1.f)s. We need (1.f), = 22 and so
f =35 =277 (which is 00001 0 - - - 0 in binary)

47 times

So 33 = (—=1)°(1 + 27°)2°. The next largest floating point number is an increment of
eps = 27°? in the fraction; we have (1.f) = 000010---01 in the new number and so it is
46 times

(—1)°(1 4+ 275 +27°2)2° = 33 + 27%7; our increment is 277,
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3 Matrix And Vector Norms

Problem 3.1) For x € R™, show that ||z|2 < v/n||z| ]|x]||1-

€1
: ] €R" be given. For any of the z;, |z;|* < |z;]|z;] < (max |le) |z;|. Then:

Tn 1<i<n

Let 2= [

n

Z |z, |* < Z (112?2; |xl|) || Above fact

j=1 j=1

n n
Z 2| < <max \xl\) Z | Distributive Law
= 1<i<n oy

n n
S gl < e > gl Definition of ||z|s
j=1 =1

n
> al? < ool Definition of ||z[;
j=1

n
Z 12512 < Vlzllsol|z |1 Both sides positive
j=1

zll2 < vVl oozl Definition of [z,

10
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Problem 3.2) Let A € R™ ™ be nonsingular, with pivoted LU decomposition
PA = LU where P € R™ "™ is a permutation matrix, U € R™*" is upper tri-
angular, and L is unit lower triangular with all elements |L;;| < 1. Show that
the infinity norm of U~! can be bounded in terms of the infinity norm of A~1,

U oo < nl| A7 oo

All permutation matrices are invertible (all rows are linearly independent since, by the
definition of invertibility, each row has exactly one non-zero entry, and no other entries in
the same column are non-zero). We are given that A is nonsingular. So PA can be brought
to row echelon form U (this is a necessary condition of invertibility) by a series of elementary
matrices multiplying to L=!, and we know that all four matrices are invertible.

With this insight, we can write U~! = A~1 P71 L by the rules for matrix inverses. Observe:

U oo = |[AT'P L 0o Applying norm to above
<A Moo IP Ll 0o Submultiplicative Property and commutativity
= |A" | IP lool| Llloo P is a permutation matrix, so orthogonal
= |4 Yoo | L loo Row sums of permutation matrix are all 1
<n[|A™ We've assumed |L; j| < 1, so the max row sum of L is n

11
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Problem 3.3) Let A = [a1,...,a,] € R™*" have columns a; € R™. Show that the

two-norm of A can bounded in terms of the largest column two-norm, ||A|l> <

vn max |lajl|2- Your proof should use the definition of the two-norm, and be
1<j<n

presented in terms of columns rather than individual matrix elements.

By the definition of matrix norm, ||Alj; = max ||Ay|l2. Choose z € R™ with [|z|; = 1

llylla=1
and ||Az||2 = ||Al|2. Now observe:
|All2 = || Az||2 Definition
n
= Z xia; Column view of matrix multiplication
i=1 >
n
< Z |z Triangle Inequality
j=1
n
< Z |z - ||ajl|2 Homogeneity
j=1

n

< ( E |x]|> max [|a;||2 Distributive Law after bounding by maximum

— 1<j<n
]:

< [|z||2v/n - ax a2 Cauchy-Schwarz Inequality, ||z]|; < v/nllz]|s
<jsn
< v/n- max ||aj||2 How z was defined
1<j<n

The second to last inequality comes from the Cauchy-Schwarz inequality, that |a’b| <
||lal2]|b]|2 for all a,b € R™, and then taking a to be our choice of x and b to be the column

vector of all I’s. So [|z7blly = [lzlli < [Jzllay />0 03 = [lzllay [ >2 1 = ||lzll2 - /0 and we've
\/ j=1 \/ =1

proved our desired result.

12
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Problem 3.4) Let the nonsingular matrix A € R"*™ be partitioned as A =
|:A11 A12

21 A22

Very that A has a block LU factorization, L = {I{;“l IO_,J and U = [AOH én}

22
where U is block upper triangular, by expressing Ls; and U, in terms of the

blocks of A.

] where A;; € R*** for some 1 < k < n and A;; is nonsingular.

First note the dimensions of the blocks. Since L € R™™ and since I}, has k rows, Lo, must
have n — k rows. Further, since I,,_; has n — k columns, Lo; must have k columns. We can
apply this same logic for the two other matrices to see Ay, € RFX(=F) [, € R(—F)x(n=k)
and Ay € RM=Rx(=k) This is a useful check to verify the below computations are valid.

With this check out the way, we now expand the factorization:

_ [An A
A= | A1 A22:|

= LU

_ [ O } {An A12}
_L21 ]nfk U22

[ L(An) +0(0) I (A1) + 0(Up)
| Lo1 (A1) + 1n—x(0) Lo1(Ar2) + L1 (U22)

_ [ An A }
| Lo1 A1y Lot (Asa) + Uso

This shows that we need As; = L9y Aj; and subsequently Ay = Lot (Aja) + Uss.
We are given that Ay; is invertible, so have Ly; = A21A1_11, which is well-defined. Plugging

this value in to the formula for U, we see Uy, = Agy — Ay A['Aj and have reached our
result.

13
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4 Singular Value Decomposition

Problem 4.1) Let A € R™*™ with m > n and Dim(C(A)) = n. Use a singlular
value decomposition (SVD) of A to determine a SVD of AT A.

Consider the SVD A = USV where U € R™ ™V € R™", and ¥ = [%] € R™*" with

01
Y= [ ] (we know these n singlular values are strictly positive, since the rank of
On

the matrix is n). We'd like to find a SVD for AT A € R"*".
By the transpose rules, A7 = (UXV)T = VISTUT. Then we have:

ATA = (VISTUT)(UDV) Above note
=V IxUtu)sv U and V are orthogonal, plus associativity
=VxT [a Vv The form > takes
=V 1Z?v (Block) matrix multiplication

We claim V122V is a valid SVD for ATA € R™*". To verify this, we check the three
required properties. First, V' € R™"™ is orthogonal from the decomposition of A. Second,
V1 € R™" is also orthogonal (we have (V1)~! = (V1T since (V~!)~! = V by the inverse
rules), and since (V)T = (V)T =V as well by the orthogonality of V. Finally, Z% € R™*"
is diagonal with non-negative entries from the decomposition of A. Note that this shows the
singlular values of AT A are the square of the singlular values of A (see Problem 4.3).

14
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Problem 4.2) Let A € R™*™ with m > n and Dim(C(A)) = n. Use a singlular
value decomposition (SVD) of A to determine a SVD of AAT.

Consider the SVD A = UV where U € ™™, V € R™", and ¥ = [§| € R™" with

01
¥ = [ (we know these n singlular values are strictly positive, since the rank of
On

the matrix is n). We'd like to find a SVD for AAT € R™*™.

By the transpose rules, AT = (UXV)T = VISTUT. Then we have:

AAT = (USV)(VISTUT) Above note
=Ux(vvhxtu! U and V are orthogonal, plus associativity
=Uxyty—! Inverse rules
=U [g} z o) U The form ¥ takes
=U [ZO2 8} Ut (Block) matrix multiplication

We claim U(ZXT)U ! is a valid SVD for AAT € R™*™. To verify this, we check the three
required properties. First, U € R™*™ is orthogonal from the decomposition of A. Second,
U~1 € R™™ is also orthogonal (we have (U~1)~! = (U~1T since (U~!)~! = U by the inverse
rules, and since (U~1)? = (UT)T = U as well by the orthogonality of U and the transpose
rules). Finally, (XX7) € R™*™ is diagonal with non-negative entries from the decomposition
of A. The block matrix multiplication above shows the first n singular values of AAT are the

square of the singular values of A, and the subsequent m — n singlular values are zero (see
Problem 4.3).

Problem 4.3) Let A € R™*™ with m > n and Dim(C(A)) = n. Express the
individual singlular values of ATA and AAT in terms of those of A.

From Problem 4.1, we have the SVD AT A = V=122V and so the singlular values of AT A
are the square of the singlular values of A.

From Problem 4.2, we have the SVD AAT = U(SST) U~ = U [Z(f 0] U~ and the first n

singlular values of AA” are the square of the singlular values of A, and the subsequent m —n
singlular values are zero.

15



Flaherty, 16

Problem 4.4) Let A € R™*™ with m > n and Dim(C(A)) = n. Use a SVD of A
to determine a SVD of (ATA)~'AT and its individual singular values.

Consider the SVD A = USVT where U € R"™™, V € R"™", and ¥ = [§] € R"™" with

01
Z = -
[ Un

matrix is n). We’d like to find a SVD for (AT A)~tAT € R™™,

] (we know these n singular values are strictly positive, since the rank of the

By the transpose rules, AT = (UXV)? = VIETUT. From the derivation in Problem 4.1,
ATA =V~=1Z2V. Then we have:

(ATA)TAT = (v Z22v) N (vIsTUT) Above Notes
= (VY ZH) v (vIsTuT) Inverse Rules
= (VY (Z)) v hHvisTuh U and V are orthogonal
=V izH(wvvhHstu! Associativity
=Vl (zH'xhHu Inverse rules
aLl o 0---0
—y! { 1] [ i 8 8] U~! Z Diagonal and form ¥ takes
1 0.0
=yt 0...0l U Matrix multiplication
L og...0

Where the second to last equality follows from the fact that the inverse of a diagonal
matrix is the inverse of its diagonal elements, and the fact that X7 appends m — n columns
of zeros to Z.

We claim V~1([Z710))U~! is a SVD for (ATA)~1AT € R™™ (where 0 € R™ (M=) To
verify this, we check the three required properties. First, V=! € R™ " is orthogonal since
(VH=t = v = (VDT = (VYT by the orthogonality of V. Second, U~! € R™™ is
also orthogonal since (U™1)™! = U = (UT)T = (U™')T by the orthogonality of U. Finally,
[Z710] € R™™ has a first block that is diagonal with non-negative entries from the decom-
position of A (recall that all n singular values of A are strictly positive, and thus have an
inverse, since A was full rank), and a final block of all zeros.

The form of [Z710] tells us that the singular values of (AT A)~*AT are the inverse of the
singular values for A.

16
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5 Projections And Least Squares

Problem 5.1) Let A = 1;7 be the 17 X 1 vector of all ones, and b be the first
column of the 17 X 17 identity matrix. Determine the solution  of the least
squares problem min, || Az — b||2.

The normal equation is AT Az = ATbh. Note that ATA is a (non-zero) scalar and thus
invertible, so there is a unique solution to the least-squares problem. It is:

T=(ATA)ATD Isolating x from normal equation
1 17 17
= —A"b ATA=) Al=) 17=1
0 A
0
=[5+ = [] Form A" and b take
0
1

= — Matrix multiplication

Problem 5.2) Let P € R™*™ be an orthogonal projector. Show that Range(P) =
Null(Z, — P).

We just use the idempotent property of orthogonal projectors, that P? = P. To show the
desired result, we try for dual containment.

First, assume a € Null(f,, — P) = {z € R" : (I, — P)z = 0}. We know such a vector
exists since linear transformations always map zero to zero vectors. Then by distributivity,
(I,—P)a=0= a—Pa=0= Pa=a, and so a is in the range of P; we see Null(/,, — P) C
Range(P).

Next, assume b € Range(P) = {y € R" : 3z € R" s.t. Px = y}. Again, we know such
a vector exists because zero is an element of every vector space, and zero will always map
to zero under linear transformations. Then by definition, Pz = b for some z. Since P is
idempotent, we also have P>z = P(Pz) = Pb. Plugging the last equality into the second
expression, we have P(Px) = Pb = b and so b — Pb = 0; b is in the null space of I,, — P;
Range(P) C Null(f,, — P). This proves our result.

17
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Problem 5.3) Let A € R™*" have orthonormal columns. Show that AT = AT.

Recall AT = (ATA)"1AT. Since A has orthonormal columns, (ATA) = I,. It is then
straightforward to see that AT = (AT A)71AT = (I,)71AT = [,,AT = AT.

Problem 5.4) Let A € R™*™ have orthonormal columns, and let b = (I, —
AAT)e,. Determine the solution Z to the least squares problem min, ||Az — b||».
Note that since A is orthonormal, AT A = I,,, and is thus invertible; we will have a unique

solution.

From the normal equation, we have:

T=(ATA)TATH Definition
= I,(ATb) A has orthonormal columns
= AT (1,, — AA e, How b was defined
= (AT — ATAA e, Matrix multiplication is distributive
= (AT — (ATA)AD)e, Matrix multiplication is associative
= (AT — I,AT)e, A has orthonormal columns
=0e,=0eR" The n-dimensional vector with n-many zeros

18
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