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1 Scalar, Vector, And Matrix Multiplication

Problem 1.1) Suppose Ax = Ay = 0 for A ∈ Rm×n and x, y ∈ Rn. Combine the
two statements into a single equation AB = C that is equivalent to the above.
Determine B and C, and specify their dimensions.

Consider B = [x y] ∈ Rn×2 (and thus C = 0 ∈ Rm×2).

First assume Ax = Ay = 0. Right-multiplying A by B gives a linear combination of the
columns; AB = [AB•,1 AB•,2] = [Ax Ay] = [0 0] ∈ Rm×2; Ax = Ay = 0 =⇒ AB = C.

Next assume AB = C = 0 ∈ Rm×2. Since a matrix is zero only when all its entries are
zero, and we showed above that AB = [Ax Ay] , we must have Ax = 0 and Ay = 0. This
proves the equivalence.

Problem 1.2) Determine the column vectors u and w such that

[
1 −2 −2
−2 2 4

]
=

uwT and u is equal to the second column of the matrix.

We are given u=

[
−1
2

]
and want to find w such that

[
−1
2

]
wT=

[
1 −2 −2
−2 2 4

]
= A. One

way to look at this is to find the scalar multiples of u that form the columns of A. The first

column of A is A•,1=− u, A•,2=u, and A•,3=2u. So wT= [−1 1 2] and we have u =

[
−1
2

]
.

Problem 1.3) For x ∈ Rn and y ∈ R1×n, show how to compute (xy)3x using only
inner products and scalar multiplications.

Write (xy)3x = (xy)(xy)(xy)x = x(yx)(yx)(yx)x = x(yx)3 by the associativity of matrix

multiplication. Since y ∈ R1×n and x ∈ Rn×1, yx =
n∑

i=1

yi,1x1,i = r ∈ R; it is an inner

product. Using scalar multiplication, we can compute (yx)3 = r3 =

(
n∑

i=1

yi,1x1,i

)3

. Then,

since scalar quantities commute with matrices, we can write xr3 = r3x = (yx)3x and perform
element-wise scalar multiplication on the elements of x with the quantity (yx)3 to get our
desired computation.
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Problem 1.4) 4) Let x1, . . . , xn, a ∈ Rd be vectors, and define the matrix C =
n∑

j=1

(xj − a)(xj − a)T . Derive the expression C = (X − a1T )(X − a1T )T where 1

is the vector of all ones, and X ∈ Rd×n.

Consider X = [x1 x2 · · · xn] ∈ Rd×n. Since X ∈ Rd×n, we must have a1T ∈ Rd×n as
well, and then since a ∈ Rd×1, we must have 1T ∈ R1×n.

Let (xj)i denote the ith element of the column vector xj. Similarly let ai denote the ith

element of the column vector a.

For notational ease, label (xj − a)(xj − a)T =

(xj)1 − a1
(xj)2 − a2

...
(xj)d − ad


(xj)1 − a1
(xj)2 − a2

...
(xj)d − ad


T

= vjv
T
j = Mj.

Now observe:

C = (X − a1T )(X − a1T )T

=

( [
x1 x2 · · · xn

↓ ↓ ... ↓

]
−
[
a a · · · a

↓ ↓ ... ↓

] )( [
x1 x2 · · · xn

↓ ↓ ... ↓

]
−
[
a a · · · a

↓ ↓ ... ↓

] )T

=

 [
(x1 − a) (x2 − a) · · · (xn − a)

↓ ↓ ... ↓

]
︸ ︷︷ ︸

∈Rd×n



(x1 − a) →
(x2 − a) →

· · · →
(xn − a) →


︸ ︷︷ ︸

∈Rn×d



=



n∑
j=1

((xj)1 − a1)((xj)1 − a1)
n∑

j=1

((xj)1 − a1)((xj)2 − a2) · · ·
n∑

j=1

((xj)1 − a1)((xj)d − ad)

n∑
j=1

((xj)2 − a2)((xj)1 − a1)
n∑

j=1

((xj)2 − a2)((xj)2 − a2) · · ·
n∑

j=1

((xj)2 − a2)((xj)d − ad)

...
...

. . .
...

n∑
j=1

((xj)d − ad)((xj)1 − a1)
n∑

j=1

((xj)d − ad)((xj)2 − a2) · · ·
n∑

j=1

((xj)d − ad)((xj)d − ad)



=
n∑

j=1

((xj)1 − a1)((xj)1 − a1) ((xj)1 − a1)((xj)2 − a2) · · · ((xj)1 − a1)((xj)d − ad)
((xj)2 − a2)((xj)1 − a1) ((xj)2 − a2)((xj)2 − a2) · · · ((xj)2 − a2)((xj)d − ad)

...
...

. . .
...

((xj)d − ad)((xj)1 − a1) ((xj)d − ad)((xj)2 − a2) · · · ((xj)d − ad)((xj)d − ad)


=

n∑
j=1

Mj =
n∑

j=1

vjv
T
j =

n∑
j=1

(xj − a)(xj − a)T
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Problem 1.5) For xj ∈ Rn, 1 ≤ j ≤ 4, determine the matrix Z that produces the

transformation Z

[x1x2x3x4

]
=

[x1x3x4

]
and represent Z as a sum of outer products.

Z =

[
1 0 0 0
0 0 1 0
0 0 0 1

]
=

[
1
0
0

]
[1 0 0 0] +

[
0
1
0

]
[0 0 1 0] +

[
0
0
1

]
[0 0 0 1]

Problem 1.6) Let A ∈ Rn×n be a matrix with A + 1
3
A3 + 1

5
A5 = I. Is A singular

or nonsingular?

A is nonsingular. See that A(I + 1
3
A2 + 1

5
A4) = I by the distributive laws and so (by the

uniqueness of inverses), A−1 = (I + 1
3
A2 + 1

5
A4), which is well defined because A is square.

Problem 1.7) For the matrix B = I − v(wTv)−1wT ∈ Rn×n where v, w ∈ Rn with
wTv ̸= 0, present a derivation for B2.

We have:

B2 =
(
I − v(wTv)−1wT

) (
I − v(wTv)−1wT

)
Definition

= I − 2v(wTv)−1wT + v(wTv)−1wTv(wTv)−1wT Expanding

= I − 2v(wTv)−1wT + v(wTv)−1(wTv)(wTv)−1wT Grouping

= I − 2v(wTv)−1wT + v(wTv)−1wT Properties of inverses

= I − v(wTv)−1wT Simplifying

= B B is idempotent

Problem 1.8) Show that an upper triangular orthogonal matrix must be diagonal.

Let A be both upper triangular and orthogonal. As A is upper triangular, AT is lower
triangular, i.e. AT

i,j = 0 for all i < j. On the other hand, A−1 is also upper triangular, i.e.

A−1
i,j = 0 for all i > j. Combined with the fact that A is orthogonal, i.e. A−1 = AT , we must

have A−1
i,j = AT

i,j = 0 whenever i ̸= j. This is precisely the definition of a diagonal matrix.

Problem 1.9) Let X = [b · · · b]︸ ︷︷ ︸
n times

∈ Rm×n where b ∈ Rm. Present a derivation to

determine a simple expression for XXT .

Call bi the ith element of b. Then:

XXT =

[
b1 · · · b1
...

. . .
...

bm · · · bm

] [
b1 · · · bm
...

. . .
...

b1 · · · bm

]
=

 nb21 nb1b2 · · · nb1bm
nb2b1 nb22 · · · nb2bm
...

...
. . .

...
nbmb1 nbmb2 · · · nb2m

 = nbbT
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Problem 1.10) For vectors x, y ∈ Rn show that xTy = 1
4
(∥x + y∥2

2 − ∥x − y∥2
2).

First, recall that for any vector a ∈ Rn, ∥a∥22 = aTa. Next, recall that for any vectors
a, b ∈ Rn, aT b = bTa.

Proceeding to the problem at hand, we can write:

∥x+ y∥22 = (x+ y)T (x+ y) First note above

= (xT + yT )(x+ y) Transpose rules

= xTx+ xTy + yTx+ yTy Distributing

= ∥x∥22 + xTy + yTx+ ∥y∥22 First note above

= ∥x∥22 + ∥y∥22 + 2xTy Second note above

And similarly:

∥x− y∥22 = (x− y)T (x− y) First note above

= (xT − yT )(x− y) Transpose rules

= xTx− xTy − yTx+ yTy Distributing

= ∥x∥22 − xTy − yTx+ ∥y∥22 First note above

= ∥x∥22 + ∥y∥22 − 2xTy Second note above

Then (∥x + y∥22 − ∥x − y∥22) = (∥x∥22 + ∥y∥22 + 2xTy) − (∥x∥22 + ∥y∥22 − 2xTy) = 4xTy.
Dividing through by 4, we reach our result.
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2 Floating Point Arithmetic

Problem 2.1) The expressions 2−1024 and 1
21024 are equal in exact arithmetic. Ex-

plain precisely what happens when they are evaluated in IEEE double precision
floating point arithmetic (in MATLAB), and why.

We first note that the normalized double-precision floating point of a number is given
by (−1)s(1.f)22

e−1023 where s is allocated 1 bit, f is allocated 52 bits, and e is allocated 11
bits. Since e is allocated 11 bits, (and since cases of all “1”’s or all “0”’s are reserved for
special values), the total exponent after including the bias is minimally 1−1023 = −1022 and
maximally (211−1−1)−1023 = 1023. Thus, realmin = 2−1022 and realmax < 2·21023 = 21024

(the smallest and largest normalized representation of numbers, respectively).

In the case of 1
21024

, MATLAB first computes 21024, and then takes the reciprocal of the
result. But since 21024 > realmax by the above explanation, 21024 results in overflow and
evaluates as Inf. In contrast to NaN, operations with Inf can still result in real numbers in
MATLAB. We see that here, as 1

21024
is interpreted as 1/Inf = 0 exactly.

In the case of 2−1024, since

[
eps(0) = (0. 0 . . . 0︸ ︷︷ ︸

51 times

1)22
−1022

]
< 2−1024 < realmin, the eval-

uation of 2−1024 results in gradual underflow. It is therefore represented as a denormalized
number (i.e., without the leading ”1” bit preceding f), and is not exactly zero.

Figure 2.1: MATLAB Output
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Problem 2.2) Determine the exact values of x and xp1, in terms of powers of two,
at the termination of the MATLAB algorithm below. Explain the purpose of the
algorithm.
x = 1;

xp1= x + 1;

while xp1 > 1

x=x/2;

xp1=x+1;

end

x=2x

At termination, x is machine epsilon (it is x ≈ eps = 2−52), and xp1 is exactly 1 + eps

2

(but 1 in floating point). Apparently, the purpose of this algorithm is to determine the order
of values of y such that the computer cannot distinguish 1 from 1 + y.

Since multiplying normalized floating point numbers by powers of two results in exact
values, the while loop stores a repeatedly smaller exact value. The loop simply divides x by
2 after each iteration, so the fractional part of the number does not change and there are no
roundoff errors. Before the while loop begins, x = (−1)0(1. 0 . . . 0︸ ︷︷ ︸

52 times

)2 = 21023−1023 = 20, after

the first loop, x = 2−1, after the second loop, x = 2−2, etc.

This process continues for an long as the computer evaluates xp1 ≡ 1+2−n (for n ∈ N) as
strictly greater than 1. By the definition of machine epsilon, eps is the next largest floating
point number after 1, and so the computer cannot store distinct floating point numbers
between 1 and 1 + eps. As such, after the 53rd iteration of the while loop, the process
is exited; the computer evaluates 1 + 2−53 as equal to 1. After multiplying x by 2 at the
conclusion of the loop, we reach the aforementioned result.
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Problem 2.3) Determine the quantities f and e in the normalized representation
of the number 33, then determine the distance of 33 to the next larger floating
point number.

We know we can write 33 = (−1)s(1.f)2 · 2e−1023 where the sign s is allocated 1 bit, the
fraction f is 52 binary bits, and the (biased) exponent e is 11 binary bits. Since 33 is positive,
s = 0.

To get the approximate magnitude of the number, we note that 25 = 32 < 33, so our
unbiased exponent should be 5, and thus e = 1028 in decimal (and so 1 0 · · · 0︸ ︷︷ ︸

7 times

100 in binary).

We then scale the magnitude with the significant (1.f)2. We need (1.f)2 = 33
32

and so
f = 1

32
= 2−5 (which is 00001 0 · · · 0︸ ︷︷ ︸

47 times

in binary)

So 33 = (−1)0(1 + 2−5)25. The next largest floating point number is an increment of
eps = 2−52 in the fraction; we have (1.f)2 = 00001 0 · · · 0︸ ︷︷ ︸

46 times

1 in the new number and so it is

(−1)0(1 + 2−5 + 2−52)25 = 33 + 2−47; our increment is 2−47.

9
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3 Matrix And Vector Norms

Problem 3.1) For x ∈ Rn, show that ∥x∥2 ≤
√
n∥x∥∞∥x∥1.

Let x=

[
x1
...
xn

]
∈Rn be given. For any of the xj, |xj|2 ≤ |xj||xj| ≤

(
max
1≤i≤n

|xi|
)
|xj|. Then:

n∑
j=1

|xj|2 ≤
n∑

j=1

(
max
1≤i≤n

|xi|
)
|xj| Above fact

n∑
j=1

|xj|2 ≤
(
max
1≤i≤n

|xi|
) n∑

j=1

|xj| Distributive Law

n∑
j=1

|xj|2 ≤ ∥x∥∞
n∑

j=1

|xj| Definition of ∥x∥∞

n∑
j=1

|xj|2 ≤ ∥x∥∞∥x∥1 Definition of ∥x∥1√√√√ n∑
j=1

|xj|2 ≤
√

∥x∥∞∥x∥1 Both sides positive

∥x∥2 ≤
√

∥x∥∞∥x∥1 Definition of ∥x∥2

10



Flaherty, 11

Problem 3.2) Let A ∈ Rn×n be nonsingular, with pivoted LU decomposition
PA = LU where P ∈ Rn×n is a permutation matrix, U ∈ Rn×n is upper tri-
angular, and L is unit lower triangular with all elements |Li,j| ≤ 1. Show that
the infinity norm of U−1 can be bounded in terms of the infinity norm of A−1,
∥U−1∥∞ ≤ n∥A−1∥∞.

All permutation matrices are invertible (all rows are linearly independent since, by the
definition of invertibility, each row has exactly one non-zero entry, and no other entries in
the same column are non-zero). We are given that A is nonsingular. So PA can be brought
to row echelon form U (this is a necessary condition of invertibility) by a series of elementary
matrices multiplying to L−1, and we know that all four matrices are invertible.

With this insight, we can write U−1 = A−1P−1L by the rules for matrix inverses. Observe:

∥U−1∥∞ = ∥A−1P−1L∥∞ Applying norm to above

≤ ∥A−1∥∞∥P−1L∥∞ Submultiplicative Property and commutativity

= ∥A−1∥∞∥P−1∥∞∥L∥∞ P is a permutation matrix, so orthogonal

= ∥A−1∥∞∥L∥∞ Row sums of permutation matrix are all 1

≤ n∥A−1∥∞ We’ve assumed |Li,j| ≤ 1, so the max row sum of L is n

11
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Problem 3.3) Let A = [a1, . . . , an] ∈ Rm×n have columns aj ∈ Rm. Show that the
two-norm of A can bounded in terms of the largest column two-norm, ∥A∥2 ≤√
n max

1≤j≤n
∥aj∥2. Your proof should use the definition of the two-norm, and be

presented in terms of columns rather than individual matrix elements.

By the definition of matrix norm, ∥A∥2 = max
∥y∥2=1

∥Ay∥2. Choose x ∈ Rn with ∥x∥2 = 1

and ∥Ax∥2 = ∥A∥2. Now observe:

∥A∥2 = ∥Ax∥2 Definition

=

∥∥∥∥∥
n∑

j=1

xjaj

∥∥∥∥∥
2

Column view of matrix multiplication

≤
n∑

j=1

∥xjaj∥2 Triangle Inequality

≤
n∑

j=1

|xj| · ∥aj∥2 Homogeneity

≤

(
n∑

j=1

|xj|

)
max
1≤j≤n

∥aj∥2 Distributive Law after bounding by maximum

≤ ∥x∥2
√
n · max

1≤j≤n
∥aj∥2 Cauchy-Schwarz Inequality, ∥x∥1 ≤

√
n∥x∥2

≤
√
n · max

1≤j≤n
∥aj∥2 How x was defined

The second to last inequality comes from the Cauchy-Schwarz inequality, that |aT b| ≤
∥a∥2∥b∥2 for all a, b ∈ Rn, and then taking a to be our choice of x and b to be the column

vector of all 1’s. So ∥xT b∥1 = ∥x∥1 ≤ ∥x∥2

√
n∑

j=1

b2j = ∥x∥2

√
n∑

j=1

1 = ∥x∥2 ·
√
n and we’ve

proved our desired result.
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Problem 3.4) Let the nonsingular matrix A ∈ Rn×n be partitioned as A =[
A11 A12
A21 A22

]
where A11 ∈ Rk×k for some 1 ≤ k ≤ n and A11 is nonsingular.

Very that A has a block LU factorization, L =
[
Ik 0
L21 In−k

]
and U =

[
A11 A12
0 U22

]
where U is block upper triangular, by expressing L21 and U22 in terms of the
blocks of A.

First note the dimensions of the blocks. Since L ∈ Rn×n and since Ik has k rows, L21 must
have n− k rows. Further, since In−k has n− k columns, L21 must have k columns. We can
apply this same logic for the two other matrices to see A12 ∈ Rk×(n−k), U22 ∈ R(n−k)×(n−k),
and A22 ∈ R(n−k)×(n−k). This is a useful check to verify the below computations are valid.

With this check out the way, we now expand the factorization:

A =
[
A11 A12
A21 A22

]
= LU

=
[
Ik 0
L21 In−k

] [
A11 A12
0 U22

]
=

[
Ik(A11) + 0(0) Ik(A12) + 0(U22)

L21(A11) + In−k(0) L21(A12) + In−k(U22)

]
=
[

A11 A12
L21A11 L21(A12) + U22

]
This shows that we need A21 = L21A11 and subsequently A22 = L21(A12) + U22.

We are given that A11 is invertible, so have L21 = A21A
−1
11 , which is well-defined. Plugging

this value in to the formula for U22, we see U22 = A22 − A21A
−1
11 A12 and have reached our

result.
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4 Singular Value Decomposition

Problem 4.1) Let A ∈ Rm×n with m > n and Dim(C(A)) = n. Use a singlular
value decomposition (SVD) of A to determine a SVD of ATA.

Consider the SVD A = UΣV where U ∈ Rm×m, V ∈ Rn×n, and Σ =
[
Σ
0

]
∈ Rm×n with

Σ =

[
σ1

. . .
σn

]
(we know these n singlular values are strictly positive, since the rank of

the matrix is n). We’d like to find a SVD for ATA ∈ Rn×n.
By the transpose rules, AT = (UΣV )T = V TΣTUT . Then we have:

ATA = (V TΣTUT )(UΣV ) Above note

= V −1ΣT (U−1U)ΣV U and V are orthogonal, plus associativity

= V −1 [ΣT 0]
[
Σ
0

]
V The form Σ takes

= V −1Z2V (Block) matrix multiplication

We claim V −1Z2V is a valid SVD for ATA ∈ Rn×n. To verify this, we check the three
required properties. First, V ∈ Rn×n is orthogonal from the decomposition of A. Second,
V −1 ∈ Rn×n is also orthogonal (we have (V −1)−1 = (V −1)T since (V −1)−1 = V by the inverse
rules), and since (V −1)T = (V T )T = V as well by the orthogonality of V . Finally, Z2 ∈ Rn×n

is diagonal with non-negative entries from the decomposition of A. Note that this shows the
singlular values of ATA are the square of the singlular values of A (see Problem 4.3).

14
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Problem 4.2) Let A ∈ Rm×n with m > n and Dim(C(A)) = n. Use a singlular
value decomposition (SVD) of A to determine a SVD of AAT .

Consider the SVD A = UΣV where U ∈ Rm×m, V ∈ Rn×n, and Σ =
[
Σ
0

]
∈ Rm×n with

Σ =

[
σ1

. . .
σn

]
(we know these n singlular values are strictly positive, since the rank of

the matrix is n). We’d like to find a SVD for AAT ∈ Rm×m.

By the transpose rules, AT = (UΣV )T = V TΣTUT . Then we have:

AAT = (UΣV )(V TΣTUT ) Above note

= UΣ(V V −1)ΣTU−1 U and V are orthogonal, plus associativity

= UΣΣTU−1 Inverse rules

= U
[
Z
0

]
[Z 0] U−1 The form Σ takes

= U
[
Z2 0
0 0

]
U−1 (Block) matrix multiplication

We claim U(ΣΣT )U−1 is a valid SVD for AAT ∈ Rm×m. To verify this, we check the three
required properties. First, U ∈ Rm×m is orthogonal from the decomposition of A. Second,
U−1 ∈ Rm×m is also orthogonal (we have (U−1)−1 = (U−1)T since (U−1)−1 = U by the inverse
rules, and since (U−1)T = (UT )T = U as well by the orthogonality of U and the transpose
rules). Finally, (ΣΣT ) ∈ Rm×m is diagonal with non-negative entries from the decomposition
of A. The block matrix multiplication above shows the first n singular values of AAT are the
square of the singular values of A, and the subsequent m − n singlular values are zero (see
Problem 4.3).

Problem 4.3) Let A ∈ Rm×n with m > n and Dim(C(A)) = n. Express the
individual singlular values of ATA and AAT in terms of those of A.

From Problem 4.1, we have the SVD ATA = V −1Z2V and so the singlular values of ATA
are the square of the singlular values of A.

From Problem 4.2, we have the SVD AAT = U(ΣΣT )U−1 = U
[
Z2 0
0 0

]
U−1 and the first n

singlular values of AAT are the square of the singlular values of A, and the subsequent m−n
singlular values are zero.

15
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Problem 4.4) Let A ∈ Rm×n with m > n and Dim(C(A)) = n. Use a SVD of A
to determine a SVD of (ATA)−1AT and its individual singular values.

Consider the SVD A = UΣV T where U ∈ Rm×m, V ∈ Rn×n, and Σ =
[
Z
0

]
∈ Rm×n with

Z =

[
σ1

. . .
σn

]
(we know these n singular values are strictly positive, since the rank of the

matrix is n). We’d like to find a SVD for (ATA)−1AT ∈ Rn×m.

By the transpose rules, AT = (UΣV )T = V TΣTUT . From the derivation in Problem 4.1,
ATA = V −1Z2V . Then we have:

(ATA)−1AT = (V −1Z2V )−1(V TΣTUT ) Above Notes

= (V −1(Z2)−1V )(V TΣTUT ) Inverse Rules

= (V −1(Z2)−1V −1)(V −1ΣTU−1) U and V are orthogonal

= V −1(Z2)−1(V V −1)ΣTU−1 Associativity

= V −1((Z2)−1ΣT )U−1) Inverse rules

= V −1

  1
σ1

. . .
1
σn

 [
σ1 0 · · · 0

. . . 0 · · · 0
σn 0 · · · 0

] U−1 Z Diagonal and form Σ takes

= V −1

 1
σ1

0 · · · 0
. . . 0 · · · 0

1
σn

0 · · · 0

 U−1 Matrix multiplication

Where the second to last equality follows from the fact that the inverse of a diagonal
matrix is the inverse of its diagonal elements, and the fact that ΣT appends m− n columns
of zeros to Z.

We claim V −1([Z−10])U−1 is a SVD for (ATA)−1AT ∈ Rn×m (where 0 ∈ Rn×(m−n)). To
verify this, we check the three required properties. First, V −1 ∈ Rn×n is orthogonal since
(V −1)−1 = V = (V T )T = (V −1)T by the orthogonality of V . Second, U−1 ∈ Rm×m is
also orthogonal since (U−1)−1 = U = (UT )T = (U−1)T by the orthogonality of U . Finally,
[Z−10] ∈ Rn×m has a first block that is diagonal with non-negative entries from the decom-
position of A (recall that all n singular values of A are strictly positive, and thus have an
inverse, since A was full rank), and a final block of all zeros.

The form of [Z−10] tells us that the singular values of (ATA)−1AT are the inverse of the
singular values for A.
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5 Projections And Least Squares

Problem 5.1) Let A = 117 be the 17 × 1 vector of all ones, and b be the first
column of the 17 × 17 identity matrix. Determine the solution x̂ of the least
squares problem minx ∥Ax − b∥2.

The normal equation is ATAx = AT b. Note that ATA is a (non-zero) scalar and thus
invertible, so there is a unique solution to the least-squares problem. It is:

x̂ = (ATA)−1AT b Isolating x from normal equation

=
1

17
AT b ATA =

17∑
i=1

A2
i =

17∑
i=1

12 = 17

=
[

1
17

1
17

· · · 1
17

] 10...
0

 Form AT and b take

=
1

17
Matrix multiplication

Problem 5.2) Let P ∈ Rn×n be an orthogonal projector. Show that Range(P ) =
Null(In − P ).

We just use the idempotent property of orthogonal projectors, that P 2 = P . To show the
desired result, we try for dual containment.

First, assume a ∈ Null(In − P ) = {x ∈ Rn : (In − P )x = 0}. We know such a vector
exists since linear transformations always map zero to zero vectors. Then by distributivity,
(In−P )a = 0 ⇒ a−Pa = 0 ⇒ Pa = a, and so a is in the range of P ; we see Null(In−P ) ⊂
Range(P ).

Next, assume b ∈ Range(P ) = {y ∈ Rn : ∃x ∈ Rn s.t. Px = y}. Again, we know such
a vector exists because zero is an element of every vector space, and zero will always map
to zero under linear transformations. Then by definition, Px = b for some x. Since P is
idempotent, we also have P 2x = P (Px) = Pb. Plugging the last equality into the second
expression, we have P (Px) = Pb = b and so b − Pb = 0; b is in the null space of In − P ;
Range(P ) ⊂ Null(In − P ). This proves our result.

17
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Problem 5.3) Let A ∈ Rm×n have orthonormal columns. Show that A† = AT .

Recall A† = (ATA)−1AT . Since A has orthonormal columns, (ATA) = In. It is then
straightforward to see that A† = (ATA)−1AT = (In)

−1AT = InA
T = AT .

Problem 5.4) Let A ∈ Rm×n have orthonormal columns, and let b = (Im −
AAT )en. Determine the solution x̂ to the least squares problem minx ∥Ax− b∥2.

Note that since A is orthonormal, ATA = In, and is thus invertible; we will have a unique
solution.

From the normal equation, we have:

x̂ = (ATA)−1AT b Definition

= In(A
T b) A has orthonormal columns

= AT (Im − AAT )en How b was defined

= (AT − ATAAT )en Matrix multiplication is distributive

= (AT − (ATA)AT )en Matrix multiplication is associative

= (AT − InA
T )en A has orthonormal columns

= 0en = 0 ∈ Rn The n-dimensional vector with n-many zeros

18
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