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1 Probability Triples

1.1 Definitions

Definition 1.1. Sample Space 2: any set containing outcomes (e.g. heads/tails, 1:6, etc.).

Definition 1.2. o-Algebra: A collection of sets F from a non-empty set €2 is a sigma-
algebra provided F is closed under countable union and complements. That is, F is a

sigma-algebra if whenever A, Ay,--- € F we have |J A; € F and A{ € F,
i=1

Example 1.1: For Q = {1,2,3}, the set F = {0, {1},{2,3},Q} is a sigma algebra.
Non-example 1.1: For Q = {1,2,3}, the set F = {0, {1,2},{2,3},Q} isn’t a sigma algebra.
Example 1.2: For )., denoting all possible sequences of a coin flipped infinitely many times,
and where Ay denotes all sequences of flips which begin with a “head” (analogously, A7y
denotes all sequences of flips which begin with first a “tail” and then a “head”, etc.), the
set F =10, Ay, Ar, Agy, Agr, Agr U Ar, Agy U Ap, Q} is a sigma algebra (the generating
sets are Agy, Agr, and Ar).
Non-ezample 1.2: Where Q = Z, F = {A € Z : |A| < 0o or |A°| < oo} is an algebra (Def-
inition 1.9, Page 5) but not a sigma-algebra. To see this, consider a sequence of sets
A; = {i,i+ 1} for i € N. Since each A; is finite, each A; is in F. If F was to be a sigma-
algebra, then the countable union of these sets, namely N, must also be in F. But both N
and it’s complement —N U {0} are infinite, so aren’t in F.

Definition 1.3. Event Space F: a og-algebra consisting of unions, intersections, and com-
plements from elements in the sample space.

Ezample 1.3: If our sample space is {1,2,3}, an event space could be the following:
{0,{1,2,3}, {1}, {2}, {3}, {1,2},{1,3},{2,3}}. We denote such sigma-algebras 2% to in-
dicate it is the power set. Since the power set is the set of all subsets, it is the largest
possible sigma algebra on any finite (2 (compare this example to Example 1.1, for instance).

Definition 1.4. Measurable Space (X, X): A set X (for example a sample space) along
with a sigma-algebra > on the set.

Definition 1.5. Measure p: In the context of a measure space (X, X)), a measure p : ¥ — R
is a function from the sigma-algebra to the real line such that p(f)) = 0 and u is countably

additive, i.e. for all disjoint A, Ag,--- € X, ,u( + Ai) = > u(4;) >0.

i=1 i=1
Definition 1.6. Measure Space (X, X, u): A measurable space along with a measure
acting on the space.

Definition 1.7. Probability Measure IP: A probability measure P : F — [0,1] is a
function on a sigma-algebra F of the sample space €2 such that P(2) = 1 and P is countably

additive, i.e. for disjoint A;’s, IP( ¢ AZ) = > P(A4;). This is a specific case of a general
i=1 i=1

measure. Note that P(()) = 0 as a consequence of the other two conditions.

4
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Example 1.4: Probability measures are not unique. Suppose our measure space is () =

{1,2,3} and F = 2% One probability measure is P(A) = %, the uniform measure. A

different measure on the same space is P where P assigns probability % to the event {1} and
probability § to the events {2} and {3} (specifying the probability of all the singletons in a
finite power set suffices to completely determine the measure).

Ezample 1.5: Suppose our sample space is [0, 1] and our sigma-algebra is B([0, 1]) (a borel
set, which is formed by starting with all the closed intervals in [0, 1], and adding in all other
sets necessary for a sigma-algebra). One probability measure is the Lebesgue Measure,
P ([a,b]) = b — a. Another probability measure is P ([a,b]) = b — a2

Definition 1.8. Probability Space (€2, F,IP): A triple consisting of a sample space €2,
an event space F, and a probability measure P acting on the measurable space (2, F).

Definition 1.9. Algebra: A collection of sets A from a non-empty set ) is an algebra
provided A is closed under finite unions and complements. That is, A is an algebra if

whenever Ay, As, ..., A, € Awe have |J A; € A and A} € A.
i=1

Ezample 1.6: Any sigma-algebra (Definition 1.2, Page 4) is automatically an algebra since
if sets are closed under countable union, they are of course also closed under finite union.

Non-example 1.3: Where Q = {1,2,3,4}, the set A = {{1,2},{2,3}} is not an algebra
since {1,2} U{2,3} = {1,2,3} ¢ A.

Ezample 1.7: Where Q =7, F = {A € Z : A or A° is countable} is an algebra.
Non-example 1.4: Where Q =Z, F = {A € Z : A is countable} is not an algebra.

Definition 1.10. o-Algebra (Generated By An Event A, o(A)): It is trivial to see
that the intersection of sigma algebras is itself a sigma-algebra. So we can define o(A) to be
the intersection of all sigma-algebras containing A (in this sense, it is the smallest such set).
Constructively, this means we start with the sets in A, and allow for countably many unions,
intersections, and complements until we run out of ability to add more.

Example 1.8: Consider the sample space (2, from Example 1.2 and the event Ay along
with the event Ayp (i.e. all sequences of coin flips that start with a head and then a
tail). If A ={Ay, Agr}, what is 0(A)? We start with {0, Qu, Ay, Agr} C o(A), the two
generating elements along with the empty and full set which are included by default.

The complement of Ay is simply A7.The complement of Ay is everything that doesn’t
start with a head and then a tail, so everything that either starts with a tail, or starts with
back-to-back heads; A%, = Axy U Ar. So after adding the initial complements, we have

{0,Q, A, Agp, Ap, App U A} C o(A).

The union of 0, Qu., Ax, and Ar with all elements to their right are already in the set.
The union of Ayt with Az is a new element Ay UA7. The complement of this new element
is App, whose pairwise union with each of the other seven elements are already in the set.

So, 0(A) = {0, Q. Ar, Ar, A U Ap, Ap, Agr U Ar, Aum b

5
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Ezample 1.9: The Borel sigma-algebra B(R) is generated by intervals on the real line (it
starts with closed intervals, and adds in everything needed to be a sigma-algebra).

An interesting element in B([0, 1]) is the Cantor Set. Label C} = [0, 5] U [2,1], label
Cy=10,5] U2, 3]U[3 T] U3, 1], and so on (each new Cj, removes the middle third of all

parts of Cy_1). The Cantor Set is C' = [ Cj.

k=1

Since there are 2% disjoint segments in each O}, each segment of length Sik, under the

Lebesgue measure P, P(Cy) = (%)k Then as C; O Cy D .-+, by continuity from above

(Theorem 1.1, Page 7), P(C) =P (ﬂ Ck) = lim P(Cy) = lim (%)k = 0.
k=1 k—o0 k—o0

What is interesting about this set is that it has zero probability despite having uncount-
ably many points. To see this, imagine there was an enumeration of points ¢, co,--- € C.
Let K be the portion of Cy that doesn’t contain ¢; (so, K is either [0, 5] or [2,1]), K5 be
the portion of K; N Cy that doesn’t contain ¢y (if ¢o ¢ K7, pick either section), and so on.
Then K1 D Ky D --- and ¢ ¢ Kiy,¢y ¢ Ky, .... Due to the nesting of the non-empty K,

o

there must be some element y € (| K,, C C. But due to the construction of the K;, y is

n=1
not in the list ¢, ¢, . ..; there cannot be an enumeration of the points of C.

Definition 1.11. Resolved Sets: Suppose we are given a measure space (2, F) and an
outcome w € (). The sets in the event space F which are resolved by some level of information
are those sets A € F that either definitely contain or definitely don’t contain w. For this
reason, it may be helpful to informally think of sigma-algebras as “information”.

Ezxample 1.10: Let €2 = Q3 denote all the possible outcomes of three coin flips. Suppose
that someone performs the coin flips, and you are interested in their outcome w € €25. If
the person tells you the value of the first flip, you are not able to fully know w, but you can
narrow down the possibilities.

Of the sets in 2, () and 2 are always resolved (€2 is definitely in Q, and () is definitely
not in (). With the additional information given, the sets Ay = {wyy,wyr} and Ap =
{wrw,wrr} are also resolved (e.g., if they tell you the first flip is a head, then w is definitely
in Ay and definitely not in Ar). All together, the sets that are resolved by the information
form a sigma-algebra F; = {0, Q, Ay, Ar}.

Definition 1.12. Filtration: Where (2 is a sample space, where T' is some fixed positive
number, and where F; is a sigma-algebra for all ¢ € [0, 7T, then if F; C F, whenever s < t,
we say the collection F; for ¢t € [0, 7] is a filtration.

Ezxample 1.11: Suppose the person in Example 1.10 now reveals the first two flips of w.
Then the sets Ay, Apyr, Ary, and Apr are also resolved, and we get the sigma-algebra
JF5 of all these unions and complements. Then {(), Q} = Fy C F; C F, is a filtration— as we
get further along, we get more and more information about w.
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1.2 Theorems And Examples

Theorem 1.1. Properties of Probability Measures: All probability triples (2, F, P)
satisfy the following:

1. Monotonicity, if A, B € F with A C B, then P(A) < P(B)

) <
2. Subadditivity, if Ay, Ay, --- C F, then IP(UA> < L P(4)

3. Continuity from below and above:

n—oo

(a) From below, 4y C A C .- = ]P( Ej AZ-> = lim P(4,)
i=1

n—o0

(b) From above, B; D By D -+ = 113( N Bi> = lim P(B,)

Proof. For 1, P(B)=P(B N A¢) + P(A) by countable additivity, and P(B N A¢) > 0.

For 2, we first make the union disjoint, then apply countable additivity, then apply mono-
tonicity. Call A} = A;, A, = Ay N (A}, etc. Then ]P(UA) = (UA’) Z]P(A’)
by countable add1t1v1ty By construction, A, C A; for every i, SO by 1, we conclude

;P(Aé) < ;P( i)-

n
For 3a, we use the same construction as for 2 and the fact that (J A, = A/, for all n.
i=1

Then ]P( U A) ( N A/) Z]P(A’) — lim Z]P(A’) = 1im P( .@1 A7) = Tim P(A,)

TL—)OO n—oo

An analogous process 1s used for 3b |

Theorem 1.2. Caratheodory’s Extension Theorem: Let A be an algebra, and assume
P : A — [0,1] satisfies the requirements for a probability measure. Then there exists a

unique P : 0(A) — [0, 1] such that P(A) = P(A) for all A € A.

Theorem 1.3. Uniqueness of CDF: Where 2 = R, and F = B(R), define a new function,
F:R —[0,1] given by F(z) = P((—o00,z]) that fulfills the following:

1. Monotone Increasing: if a < b then F(a) < F(b)
2. Right Continuous: if x,, \ z (i.e. 1 > x5 > -+ and lim z, = x), then F(z,) \, F(x)

n—o0

(essentially, continuity from below, Theorem 1.1, with [ (—o0,x,] = (—o0, x]).
n=1

3. Limits at too: if z,, \ —00, then F(z,) =0 and if z, oo, then F(z,) =1

Then there exists a unique probability measure P such that P([a,b]) = P((—o0,b)) —
P((—o00,a)) = F(b) — F(a) for all a,b € R. We call F the Cumulative Distribution
Function of IP.
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1.3 Problems

Problem 1.1) Let (2, F,IP) be a probability space. Show that for any A, B € F,
we have P (AU B) =P(A) +P(B) —IP(AN B).

Identity the union of A and B as everything in A that’s not in B (notationally, (AN B¢)),
along with everything in B that’s not in A (notationally, (B N A¢)), along with everything
shared between A and B (notationally, AN B). This is a disjoint union, so by the probability
axioms:

P(AUB) =P(AN B°) + P(BNA°) + P(AN B) (1.1)

Now see A can be written as everything in A that’s not in B along with the shared
elements of A and B (notationally, A = (AN B°) U (AN B)). For the same reasoning,
B = (BN A% U (AN B). Both of these are disjoint unions, so again by the probability
axioms:

P(A) = P(ANB) + P(AN B) = P(ANB°) = P(A) — P(AN B) (1.2)
P(B) = P(BNA°) + P(ANB) = P(BN A°) = P(B) — P(AN B) (1.3)

Plugging in Equation 1.2 and 1.3 to Equation 1.1, we reach our conclusion:

P(AUB)=[P(A) —P(ANB)]+[P(B) —P(ANB)|+ P(AN B) (1.4)
=P(A) + P(B) —P(ANB) (1.5)
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Problem 1.2) Let F be the collection of subsets A C R that are either countable
or cocountable (meaning A€ is countable). Define P : F — [0,1] by P(A) =

0, Ai tabl
’ .15 cOURtabI® — Note that a subset of R cannot be both countable and
1, A is cocountable

cocountable, so this map is well-defined.
a. Show that F is a o-algebra.

We just check the axioms, starting with closure of complement. Let A be a generic element
of F. If A is uncountable, then it is in F because A€ is countable, and we are immediately
done as A€ is in F since A€ is countable. So instead suppose A is countable. Then A° is in
F since (A°)° = A is countable.

Now let Ay, Ay, --- € F be a generic (possible countably infinite) collection of sets in
A. If all these sets are countable, then so is their union. To see this, label the elements of
Ay = {ay,,a1,,...}, the elements of Ay = {ay,,as,,...}, etc. (this is what it means to be
countable). Then the union of the sets is seen to be countable through a diagonal argument
(first a1, then ay,, then ay,, then ay,, etc.); the union of countably many countable sets
is countable. So instead suppose at least one of the sets in the union is uncountable, call
it Ax. Then the complement of the union is (| Ai)c = [ A from DeMorgan. Since Ay

i=1 i=1

is a member of the intersection and is countable, so is the intersection (and therefore the
complement of the union). So F is closed under countable union and we see it is a o-algebra.

b. Show that IP is a probability measure.

Recall P is a probability measure if P(£2) = 1 and if it is countably additive, that is if
P(lH A;) = > P(A;) for a countable collection of A; € €. Since R is uncountable (recall
i=1 i=1

Cantor’s diagonalization argument, that if f(n) was a listing of numbers from n € N, with
each f(n) having a decimal expansion 0.a,,ay,,an, ..., such a collection would necessarily
exclude real numbers in (0, 1) since the decimal expansion b = 0.byby ... where b, = 2 if
a,, = 1 and b, = 1 if a,, # 1 is not contained in the f(n)), and has a countable complement
(namely, the null set), P(R) = 1.

Now let {A;},.y be a countable collection of disjoint subsets of F. If the A; are all
countable, then so to is their union (see part a above), and thus P(l{ 4;) = 0= >0 =
i=1 i=1

Y P(A4;). If one A; is cocountable, call it Ag, then by construction of F, the complement
i=1

of Ay is countable. Since the union is disjoint, this means every other set in the union is
countable (because they must reside in the complement of Ay). So P(l{ A;)) =1=1+0=
i=1

P(A;)+ > P(A)= ;P(Ai).

i=1i#j
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Problem 1.3) Let Q = {1,2,3,4} and F = 29 (this is notation for the power set
of 2, which is the o-algebra consisting of all subsets of (2.)

a. Give an example of a collection A C F and a map P : A — [0, 1] such that:

1. c(A) =F
2. Q€ Aand P(2) =1

3. Whenever A4,..., A, € A are disjoint and U} | A; belongs to A, we have
IP(U?:lAi) = Z?:l IP(A;)

and yet there is no probability measure P : F — [0,1] such that P(A) = IP(A)
for all A € A. This shows that the existence part of Caratheodory’s Extension
Theorem fails without the assumption that A is an algebra.

Consider the collection A = {{1,2,3,4},{2,3,4},{1,3,4},{1,2,4},{1,2,3}} and the
probability measure P(A) =1 for all A € A.

The smallest sigma algebra containing A is F since the complement of the triples gives
the singletons, after which all the possible unions and intersections can be generated. The
probability measure as stated is valid, since the full sample space has probability 1 and since
each of the five elements of A are not disjoint to begin with.

Now imagine there was such a probability measure P on g(A). Then we’d need to
have P({1}) = 0 since P({1,2,3,4}) = P({1} w{2,3,4}) = P({1}) + P({2,3,4}) but
P({1,2,3,4}) =P({1,2,3,4}) =1 and P({2,3,4}) = P({2,3,4}) = 1 as well.

The same reasoning shows we would need P(2) = 0 and P(3) = 0. But such a scenario is
impossible because P({1,2,3}) = P({1,2,3}) =1 #0.

10
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b. Give an example of a collection A C F and two maps P,,[P : F — [0, 1] such
that:

1. c(A) =F
2. IP; and P, are valid probability measures
3. P;(A) =Py(A) forall Ac A

and yet IP; # IP,. This shows that the uniqueness part of Caratheodory’s Exten-
sion Theorem fails without the assumption that A is an algebra.

Take the set A = {{1,2},{2,3}} and consider the probability measures Py,Py : F —
[0,1] given by P1(A) = (L1 + Lsea) and Po(A) = 1(1oea + Lica).

First we show the sigma algebra generated by A is F = 22. We generate the singletons as
follows: the intersection of {1,2} € A and {2,3} € A is {2}. The complement of {1,2} € A
is {3,4}, whose intersection with {2,3} € A is {3}. The complement of {2,3} € A is
{1,4}, whose intersection with {1,2} € A is {1}. The complement of the union of the three
singletons generated above gives the fourth singleton, after which we can generate the whole
power set.

Next we show the probability measures are valid on F. The full sample space has prob-
ability one since 1 and 3 are in €2 for [P; and since 2 and 4 are in {2 for P5. The probability
of disjoint unions is equivalent to the sum of the probabilities of the sets making up the
disjoint unions since Py gives a uniform probability on {1} and {3} and Py gives a uniform

probability on {2} and {4}.

Finally, we show the probability measures agree on A. There are only two cases to check:
P1({1,2}) = 2(Liea + Lsea) = 2(1+0) = 3 = 3(1 + 0) = 2(Loea + Lsca) = P2({1,2}) and
P1({2,3}) = 5(Lica+L3ea) = 2(0+1) =1 = 2(1+0) = $(Loca+ Luca) = P2({2,3}). So P4
and P, agree on A, but not on all of F (see for example that [P1({1}) = 1] # [0 = P5({1})]).

11
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2 Measurable Functions And Random Variables

2.1 Definitions

Definition 2.1. Measurable Function: A function X : 2 — S between measure spaces
(2, F) and (S,S) is measurable if whenever B € S, X }(B) = {w € Q: X(w) € B} € F
(the inverse image of every measurable set is measurable). To emphasize that dependency
on the respective sigma-algebras and to be precise, we might say “X is (F,S) measurable”
(or just “X is F-measurable” when S is understood) and write X : (Q, F) — (S5,S).

Definition 2.2. Random Variable: A measurable function X : 2 — R between measure
spaces (2, F) and (R,B(R)) (it is just a specific case of a measurable function where the
codomain is fixed). Note that the “randomness” from a random variable comes from the
random experiment of choosing the w € ). Note further that to emphasize the fact that a
random variable is a function, we may often write X (w) (though X may be used for brevity).

Example 2.1: Every random variable X is (¢(X), B(R)) measurable (see Definition 2.4).

Ezample 2.2: Consider a measure space ({23, F3 = 293) where )3 denotes the outcomes
of three coin flips and 2 is the power set. Label each of the eight elements w € 3 in
accordance to the coin flip outcomes, (e.g. wppr), and label each set in the event space
likewise (e.g. Apr = {wnurH,wnrr}). Then Y(w) = (# number of heads in first two flips)
is a random variable. Informally, this is because the “information” contained in F3 is
sufficient to completely determine the output of the Y; Y is F3-measurable.

Non-example 2.1: Consider the same sample space and function Y as Example 2.2. If we
replace F3 with F = {0),Q3, Aeerr, Aeer} (Where Asey is the event that the third flip is
“heads”), then Y is not a F-measurable function. Informally, this is because the “informa-
tion” in F is insufficient to determine the output of Y'; knowing which events w belongs to in
F does not allow you to determine Y (w). Concretely, wy = wygr and wy = wypr are both
in Aser and Q3 (and not in the other two sets) and yet Y (wy) = 1 # 2 = Y(wy). Another
way to look at it is to take B = {2} € B(R). Then Y'({2}) = {Aunu, Aunr} ¢ F.

Ezample 2.3: Where (2, F) is a measure space and A € F, the indicator function
lLLwe A

is a random variable.
O,we A

1a:9Q — R where I4(w) =

We need to check that the inverse image of every set in B(R) is measurable. That is, we
need to check that the inverse of all subsets B from B(R) are subsets of F.

So let B be given. The pre-image of B is dependent on whether B contains either 0 or
1. If B contains 1 but not 0, then 1,'(B) is A. If B contains 0 but not 1, then 1;'(B) is
Ac. If B contains both 0 and 1, then 1,'(B) contains both A° and A4, i.e. is Q. Finally, if
B contains neither 0 and 1, then since any element in €2 maps to either 1 or 0, HZI(B) is
the empty set. Since we start with A € F and sigma algebras are closed under compliment,
A¢ € F. Sigma algebras also necessarily contain the full and empty set, so this proves 14
is measurable.

12



2.1 Definitions Flaherty, 13

Definition 2.3. Random Vector: A measurable function (X7, Xs,..., X,,) : (Q", F") —
(R™, B(R™)). This is essentially just n random variables placed next to each other.

Definition 2.4. o-algebra (Generated By A Random Variable X, o(X)): Where X
is a random variable, the sigma-algebra generated by X is o(X) = {X"!(B): B€ B(R)} =
{{w € Q: X(w) € B} € F: B € B(R)}. Informally, it is the minimally small sigma algebra
that completely captures the information revealed by the values of the random variable.

Example 2.4: Consider the random variable Y from Example 2.2, where the realization of
Y is the number of heads in the first two flips of a coin flipped three times.

There are a few Borel sets to check to help us build the sigma-algebra o(Y’). Note that
the exact borel sets below are not unique (e.g. By could just as well be {3}).

e B = {2} =Y (B AHH

H(B1) B Lo

e B ={l} = Yﬁl(BQ) = Apyr U Ary o B; ={[0,1]} = Y"(Bs) = Ar U Apr
H(Bs)
(

e Bs=1{[0,2]} = Y 1(Bs) =3

o By ={0} = Y!(Bs) = Ay o By ={[0.25,0.75]} = Y~'(By) =0

o B, = {[1,2]} — Y! B4> = AH U ATH

Do these seven elements actually form a sigma-algebra? Since every element’s com-
plement must be in the set, and since there are currently an odd number of elements, we
know the answer is “no”. Using the systematic approach from Example 1.8, we see that
the only element whose complement is missing is Ay U Argy. So we add in Agyg U Apr,
and after checking each of the pairwise unions, see that these eight elements are indeed a
sigma—algebra, O'(Y) = {@, Qg, AHH7 ATT7 AHT U ATH, ATT U AHH7 AH U ATH7 AT U AHT}

Notice that this sigma-algebra is but a small subset of F3 = 2 which has 22* — 956
elements. We repeat that Y is F3-measurable; the “information” in Fj3 is more than sufficient
to determine the value of Y. But what about all this “extra” information? For instance,
Ap is an element of F3 (and even Fy!), but Ay only appears in ¢(Y’) as a union with other
elements. This is because knowing the value of Y is not enough to know if the first flip was
“heads”. For example, if Y = 1, the first flip might have been heads, or the first flip might
have been tails— both wyrr and wryr map to 1, after all.

Definition 2.5. Distribution (Push-forward, Law) Of A Random Variable, pux: Let
(Q, F,P) be a probability space and X : (2, F) — (R,B(R)) be a random variable. Then

the law of X (distributional measure, push-forward) is the function py : B(R) — [0, 1] given
by ux(B) =P(X}B)) =P ({w e N: X(w) € B}).

Example 2.5: If the measure space in the domain of a random variable is equipped with a
probability measure, then the random variable will have a distribution. But distributions
and random variables are different concepts— different random variables can have the same
distribution, and a single random variable can have two different distributions (by changing
the probability measure).

13



2.1 Definitions Flaherty, 14

Consider the probability measures P([a,b]) = b — a and P([a,b]) = b? — a2 acting on
the borel set B([0, 1]). Consider further the random variables X (w) =w and Y(w) =1 —w
for all w € ([0,1] = ). Even though X # Y, ux = py under P. See that ux([a,b]) =
PH{weQ: X(w) € [a,b]}) =b—a=(1-a)—(1-b) =P{weQ: X(w) e[l —=b1—al}) =
P{weQ:Y(w) € [a,b]}) = puy([a,b]) where the second to last equality follows from the
observation that « <1 —-w<b = —a>w—-1>-b = 1l—a>w>1-0.

On the other hand, jix # fiy. See that fix([a,b]) = P({we Q: X(w) € [a,b]}) = b2 —a?
but that jiy([a,8]) = PQw e Q:Y(w) € la,b]}) = PHueQ: X(w)e[l—a1—b}) =
(1-0)?2—=(1—a)?=a®>—0b*—2a+2b.

Ezample 2.6: Occasionally, a random variable X may have a density function (PDF),
fx(x). This happens if ux([a,b]) = P(a < X < b) ffX )dx for all a,b € R (where fy

is necessarily non-negative). Random variables with PDFS are called continuous random
variables.

Example 2.7: Occasionally, random variables may have a probability mass function
(PMF). This happens when there is a countable sequence of numbers 1, xs, ... which the
random variable takes on with probability one, and we have a p; such that ux(B) = P(X €

B) = > p;. Random variables with PMFs are often called discrete random variables.
i, T, €EB

Non-example 2.2: Random variables need not have either a density or a probability mass
o0

function. Consider the random variable ¥ = 2?}2" where Y, "%’ Bern(0.5). See that
through the first n summands, Y takes on values from the Cantor Set given in Example 1.9,
Page 6 (if Y7 = 0, which happens with probability %, then Y € [O, %}, ifYpy=0and Yo =1
which happens with probability %, then Y € [%, %}, etc.).

If there was a density function for Y, call it fy, then we would need to see f * fry)dy =
fo fv(y)dy = 1. However, we have shown in the details to the Cantor Set explanation that
C has Lebesgue Measure 0 and thus is almost everywhere zero; fo fy(y)dy = 0.

If there was a probability mass function for Y, then we would need to have P(Y = z) > 0

o0
for some x € C. See that x can be expressed as a base-three expansion z = ) g%xn where
n=1

x, € Zs (if x € C, then x € C, for all n, which requires x; to be either 0 or 2, and so on).
There is some subtlety in that infinite expansions can be represented in two different ways.
For example, C' 5 % :0-%+0-%+2-2i7+2-8%+2-ﬁ+--- (this is an example of a

o0
: : - _ 1 1_ a
geometric series » Oar withr =z and g =% = a= 27)
n—

clear that there is at most two choices of w € ) which yield any given z € C. Since C' is
uncountable, this means P({w € Q : X(w) = z}) = 0; there can not be a mass function.

From this perspective, it is

14



2.1 Definitions Flaherty, 15

Definition 2.6. Cumulative Density Function (CDF) Of A Random Variable:
Where px is the law (Definition 2.5, Page 13) of a random variable X, the CDF of X is
the function Fx : R — [0, 1] given by:

Fx(z) = px ((—00,2]) = P(X ! (—00,2]) = P{w € Q: X(w) < 2}) = P(X <)

Here x (lowercase) denotes a generic element of the domain R, and X (uppercase) denotes
the random variable. So, we might have, e.g. X (w) = x. Compare this definition to Theorem
1.3, which doesn’t require a random variable. This is really the exact same idea, it just maps
the image of the random variable back to the sample space.

Definition 2.7. Quantile Function: Where Fx is a valid CDF for a random variable
X, the quantile function for Fy is the function Fy' : [0,1] — R given by Fy'(u) =
inf {t € R: Fx(t) > u}. We capture the intuition behind the quantile function at the cost of
precision (since Fx may not have an inverse) when we use the notation F'.

15



2.2 Theorems And Examples Flaherty, 16

2.2 Theorems And Examples

Theorem 2.1. Composition of Measurable Maps Is Measurable. Let (2, F), (S5,S),
and (7,7) be measure spaces. Further let X : Q@ — Sand Y : S — T be (F,S) and (S,7)
measurable respectively. Then Z =Y o X : Q — T is (F, T ) measurable.

Proof. Let B € T be given. Then Z_I(B) = XY (Y~(B)). Since Y is measurable, Y ! (B) €
S. And since X is measurable and Y™}(B) € S, X (Y ~1(B)) € F as desired. [

Theorem 2.2. Check generating set. A trick to ensuring measurability is to check a
generating set. If (2, F) and (S, S) are measure spaces and B C S such that o(B) = S, then
if X :Q — S satisfies X '(a) € F for all @ € S; X is measurable.

Proof. Consider the set &' = {B C S: X~Y(B) € F}. If we can show &' is a sigma-algbera,
then we will have arrived at our conclusion; since o(B) is the smallest sigma-algebra con-
taining B, we would see S C &’ and from how &’ is defined, the inverse image of any set in
&S’ is in F, which is the definition of measurable. To that end, let By, Bs, ... be given.

Since B; € §&', X~1(B;) € F, and then since F is a sigma-algebra, X ~!(Bf) € F. But
S’ is the set of all elements in S whose inverse mapping is in F, so B must be in &’. This
proves &’ is closed under compliment.

Since By, By, -+ € 8, each of X '(B;) € F. Since F is a sigma-algebra, |J X '(B;) € F.

=1

But then X~ (U B;) € F and so U B; € §'. This proves &’ is closed countable union and

thus is a 51gma—algebra and we've reached our result. |

Corollary 2.2.1. Sup And Inf Are Random Variables.

Recall that we say L is the least upper bound (supremum) of a set A provided L > a
for all @ in A (L is an upper bound) and provided whenever M > a for all a € A, L <
M (L is the least upper bound). Similarly define the greatest lower bound (infimum).
Relatedly, we can define the limit superior of a sequence {s,}, . as the value L such that
L = nlim sup{s, : n > m} (it is an infimum of supremums) and similarly define the limit

inferior. As an 111ustrat1ve example take: S, = {1 —i— ,0—35,1 —i— ,0— 1 —i— ,0—= ... }
Then sup {S,} = 2, inf {S,,} = 3, limsup {S,} =1, and hm inf {S } = 0 A sequence {S }
only has a limit if lim inf {S,} = hm sup {5, }.

Now to our statement. Where X, X5, ..., X, are random variables on (€2, F), define a
random variable X : € — R by X(w) = inf {X;(w)},c; - We claim X is a random variable.
By Theorem 2.2, we just need to verify measurability on a generating set B = (—o00, a). Since
the function is the infimum, we see inf X,, <o« = U{w € Q: X, (w) < a} € F. Similar
reasoning proves the supremum, and then by Theorem 2.1, we also see the limit inf/superior
is a random variable.

16
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2.3 Problems

Problem 2.1) Let (©2,F) and (S,S) be measurable spaces, and X: Q@ — S
a measurable map. We denote the pre-image of any B C S by X }(B) =
{w € Q: X(w) € B}. Define the collection of all pre-images of measurable sets
w(X)={X"Y(B) : B € §}. Since we assume X is measurable, we know o(X) C
F. Show that o(X) is a o-algebra.

We go directly for the definition. Assume A, Aj, Ay, ... are sets in o(X).

Since A € o(X), there exists a B € S such that X' (B) = A. Further, since A is the set
of all elements in 2 that map into B under X, A€ is the set of all elements in ) that map
into B¢ under X. Then A¢ € w(X) if and only if B¢ € S. But S is a sigma-algebra, so is
closed under compliment. As B € S, this means B¢ € S and we have shown o(X) is closed
under compliment.

Since the A; are all in o(X), there exists corresponding B; € S such that for every i,
X~1(B;) = A;. Thus if the union of the B;’s are in S, it must be the case that the union
of the A;’s are in 0(X). As each B; resides in § and § is a sigma-algebra (and so is closed
under countable union), the union of the B;’s is also in S and we have shown o(X) is closed
under countable union.

Problem 2.2) Let U be a uniform random variable on the open unit interval.
Define f: (0,1) - Ry by f(u) = — In(1 — u) Compute the distribution function
Fx of X = f(U).

Given U ~ (0,1), we know the CDF is Fy(u) = “=2 = v for values of u in the open unit

0
interval. We are asked to compute the CDF of the transformation. The general CDF method
is shown below:

—

Fx(z) =P(X <2) =P(f(U) <2) =P(U < f7'(2)) = Fu(f ' (2))

Since f(u) = —In(1 — u), we compute the inverse as:
u=—In(1-f"(u))

et =1-f"(u)

[l =1—e™

So substituting from above (with a restriction on x > 0), we have:

Fx(z)=Fy(f'(x) =Fy(l—e")=1—¢"

17



2.3 Problems Flaherty, 18

Problem 2.3) Let U be a uniform random variable on the open unit interval.
Let F be any distribution function (i.e. is non-decreasing, right continuous,
mapping to the closed unit interval, and has left and right limits at oo of 0 and
1 respectively), Find a function f : (0,1) — R such that the random variable
X = f(U) has F as its distribution function.

From the reasoning in Problem 2.2, we want f to be the inverse of F' (this is the quantile
function). However the restrictions on F' : R — [0, 1] don’t imply injectivity; F' may not have
an inverse. We can get around this by defining f(u) = inf {z € R : F(z) > u} (in non-precise
words, the smallest member of the domain of F' whose image under F' is at least u).

First check f is well-defined. For any w, f(u) < oo since F(x) goes to 1 as = goes to
infinity, and since v is maximally 1. Similarly, f(u) > —oco since F'(z) goes to 0 as = goes to
minus infinity, and since u in minimally 0.

Ultimately, we want to show X = f(U) satisfies F(z) = P(X < z) = P(f(U) < z) =
P(U < F(z)) = F(U). The third equality is what remains to be shown (i.e. f(U) <z <
U < F(x)). The second direction follows immediately from f being an infimum of the z’s.
The first direction follows from the monotonicity and right-continuity of F'. This proves the
distribution function of f is F' as desired.

Problem 2.4) Let {X;}:°, be independent exponential random variables of rate 1,
i,e P(X; > x) = e ® for x > 0. Let M,, = max;<;<, X;. Show that for any t € R,
lim P(M,, —In(n) < t) = e '. The double exponential on the right-hand side
;Ls_ﬂc);lled the Gumbel distribution. Roughly speaking, this results tells us that

for large n, M, = In(n) + Z, where Z is a random variable with the Gumbel
distribution.

See that P(M, < t) = P(X1, Xa,..., X, < 1) = P(X; < )P(Xs < t)---P(X, < t) by
independence, and further that P(X; < t)P(Xy < t)---P(X, < t) = [P(X; < t)]" by the
identical distribution. So the distribution of M, is P(M,, < t) = [1 — e~ ]" (each of the X;’s
is ~ Exp(1)).

Then lim P(M, —In(n) < t) = lim P(M, < t+In(n)) = lm [1 — e @m0D])" Ex

n—oo n—o0 n—oo

panding, we have lim [1 — e—(t“n("))]” = lim [1 — 6_te‘1n(")}” = lim [1 + _f;t] . Using
n—oo n—oo n—oo

et

the limit definition of e, this is precisely e™® = as desired.

18
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Problem 2.5) Check that the “bell curve” is in fact a density function. That is,
show that [ =1.

oo\/_

First note for all positive a, a = 1 if and only if a®> = 1. To the problem at hand, we have:
2

t2 z? y
® ez *7 o0 *7
—dt Variable change
(/oo V2T ) V2 V2

a: +y
= / / e S— dx dy Integration is bilinear
2w o] 77"
/ / rdrdf Polar coordinates
2w 1
= / (/ reoe "2 d?") de Pull out constants
0 27 0
= / ree 2 dr Integrate over angle
0
= / e du=—e"|r=1 Integrate over radius
0

The step transforming to polar coordinates follows from the substitution x = r cos# and
y = rsinf. For the integrand, we then have #2442 = r%(cos? §+sin? ) = r2. For the variables

do da -
of integration, we have J = [g; gg] = {cps@ _”me} and so drdy = |det(J)|dr df =

dy sinf rcosf
dr df

|7 cos? § +rsin? 0| dr df = r dr df. For the limits of integration, we transform the zy-plane to
polar coordinates; the radius must stretch (0, 00), and the angle must rotate (0, 27).

The step integrating over the radius comes from the substitution u = % Then % =r

and so du = rdr and the integrand is changed from r - e /2 dr to e " du.

Problem 2.6) Let {G,} -, be such that IP(G,) — 1 as n — oco. Show that for
any other sequence {A,}>7 |, we have liminfIP(A,) = liminfP(A, N G,) and
n—00 n—oo

limsupIP(A,) = limsup P(A,, NG,). This justifies the practice of “restricting to
ang_():)od event”, proﬁz_iﬁ:ad the good event occurs with probability tending to 1.
By properties of probability, we can write:
P(A,) =P(A,NG,)+P(A,NG;) <P (A, NG, +P(G))
— P (A,) —P(G) <P(4,NG,)
Then since P(A4, N G,) < P(A4,) for any n, we can squeeze P (4, N G,):
P(A,) -P(G;) <P(A,NG,) <P (A,)
As G, — 1, we must have G¢ — 0. Then as n — oo, we see:
P(A,) <P(A, NG, <P(A4,)

This proves our result.
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3 Expectations Of Random Variables

3.1 Definitions

Definition 3.1. Lebesgue Integral: Recall the definition of the Riemann Integral for a

differentiable function f. Partition the domain a = 29 < 1 < -+ < T,_1 < x, = b, let
M, = = i II = . II]| = — Tp_
k xhﬂggémkf(x)’Tnk xhi%géxkf(x)a {x07 ﬂxn}7and H ‘| ﬁgigxl% Tk 1%

then see the Upper Riemann Sum (RSp+(f) = Y. My - (zx — xx—1) and Lower Riemann Sum
k=1

(RS- (f) = >_ my - (xx — x_1) converge to the same value as ||II]| goes to zero, namely
k=1

ff f(z) dx. Integrating in this way necessitates a natural ordering of the domain, which is a
property that €2, unlike R, may not have. For that reason, instead of partitioning the domain,
we partition the range in the Lebesgue Integral.

So assume for now that 0 < X(w) < oo. Partition the range of the random variable X
as 0 = yo < y1 < ... and as before denote Il = {yo,...,y,} and ||II|| = max (yx — yr—1).

1<k<n

Consider the event Ay = {w € Q:yr < X(w) < ygy1}. Then the Lebesgue Integral is the
limit of the Lower Lebesgue Sum as ||I1|| goes to zero; ||1lqi”m0 > uP(Ar) = [ X (w) dP(w).
—Vk=1

Define X (w) = max {X (w),0} and X~ (w) = max {—X(w), 0} (in the future we may ab-
breviate maximum as X V0). f P{w € Q: XT(w) = 0}) = P{w € Q: X~ (w) = c0}) =0,
then we say X is integrable and have [, X(w)dP(w) = [, X (w) dP(w)— [, X~ (w) dP(w).
IfbothP({w € Q: Xt (w) =o0}) >0and P{w € Q: X~ (w) = o0}) > 0, then the Lebesgue
Integral is undefined. If only one of the positive or negative parts of X takes values of in-
finity with non-zero probability, then the Lebesgue Integral is either oo (in the case where

0=PHwe: X (w)=00}) <P{weN: XT(w) =00}) or —oco (in the other case).

We may be interested in integrating our random variable over a subset A of €2. In such
cases, we write [, X (w)dP(w) = [, 14(w)X (w)dP(w) where 14(w) is the indicator function
previously defined. Note that in all cases, we are integrating with respect to the probability
measure in question, since the same event may have different probabilities under different
measures. We define the expectation of X as it’s Lebesgue Integral, and write E(X) =
Jo X (w) dP(w). As we'll see below, this is just one of many ways to define expectation.

Ezample 3.1: Consider the function f : [0,1] — {0, 1} taking on values of zero if z is rational
and 1 otherwise. A result from analysis is that Q is dense in R (that is, in any interval of R
there will be both rational and irrational numbers). For this reason, regardless of the size
of ||IIT||, the Upper Riemann Sum will always be 1 and the Lower Riemann Sum will always
be 0; the Riemann Sum is undefined. In contrast, if X (w) is a random variable defined in
the same manner, then the Lebesgue Integral is defined (in fact, it is 1). To see why this is
the case, recall that Q is countable, and thus, by countable additivity and the fact that any
individual point has probability zero, P({w € Q: X(w) =0}) = 0. So, since P([0,1]) = 1,
PweQ: X(w)=1}) =1.
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Definition 3.2. Riemann-Stieljes Integral: While the Lebesgue Integral allows for max-
imum generality (for the purposes of these notes), to actually compute expectations, it often
suffices to use the integrals more familiar to us. The expectation of a function g of any
random variable X with cumulative distribution function Fx is calculated as E(g(X )) =
[ g(x) dFx(x). By definition, Fx(z) = [*_ fx(t)dt where fx is the density function of
X. By the fundamental theorem of calculus, this means dFx(x) = fx(x)dz. In particular,
E(9(X)) = [%, 9(x) - fx(x) da.

Definition 3.3. Random Variable (Simple): A random variable X is simple whenever
there are only finitely many values that X can take, that is, if there exists z1,x2,..., 2, € R
such that for all w € Q, P(X(w) € {x1,22,...,2,}) = 1.

Definition 3.4. Random Variable (Bounded): A random variable X is bounded when-
ever there exists a ¢ € R such that for all w € Q, P(|X(w)| < ¢) = 1.

Definition 3.5. Random Variable (Non-negative): A random variable X is non-negative
if for all w € 2, P(X(w) >0) = 1.

Definition 3.6. Expectation: The expectation of a random variable X, denoted E(X),
obeys

1. Linearity: for all random variables X, Y and constants ¢, E(cX +Y) = cE(X) +E(Y).
2. Non-negativity: if P(X > 0) =1 then E(X) > 0.

We define the calculation for E in four stages in the theorem section below: first for simple ran-
dom variables, then for bounded random variables, then for non-negative random variables,
then for general random variables. At each stage, we calculate the expectation differently,
and check that it agrees with previous calculations and meet the criteria for expectations
above. While this is a useful exercise, actually computing expectations is usually easier done
with the previous two pieces of machinery (Lebesgue and Riemann-Stieljes Integration).

Definition 3.7. Variance: The variance of a random variable X, denoted V(X), is the
value E[(X — E(X))?] = E(X?) — (E(X))2 The square root of the variance is called the
standard deviation; \/V(X) =o.

Definition 3.8. Covariance: The covariance of random variables X and Y is Cov(X,Y’) =
E(XY) - E(X)E(Y) = E[(X —E(X))(Y —E(Y))]. This is a generalization of variance,
since V(X) = Cov(X, X). When the covariance is zero, we say the random variables are
uncorrelated.

Ezrample 3.2: Everyone knows that “correlation doesn’t equal causation”. The reverse can
also be shown to be true. For example if X is a uniform random variable on (—1,1), and
Y = X? is another random variable, then E(XY) = E(X?3) = fjl r3dF(t) = %fil r3dr =
%:Bl = 0 and by the symmetry of the support of X, E(X) = 0. So even though Y is

literally caused by X, E(XY) — E(X)E(Y) = Cov(X,Y) = 0.

Definition 3.9. Correlation: The correlation coefficient between random variables X and

Y is p(X,Y) = % Note p € [1,1].
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Definition 3.10. Coefficient Of Determination: Where p(X,Y) is the correlation be-
tween random variables X and Y, the coefficient of determination is simply it’s square;
r? = p(X,Y)?% Note r? € [0, 1].

Definition 3.11. w-system: A collection of sets P from a non-empty set 2 is a pi-
system provided P is closed under finite intersection. That is, P is a pi-system if whenever

Ay, As, ... A, € P we have ) A; € P.
i=1
Example 3.3: Where Q=1{1,2,3}, P={0,{1,2},{2,3},{2},{3}} is a pi-system but not an
algebra (Definition 1.9, Page 5). It is not an algebra since, e.g., {1,2} U{3} = {1,2,3} ¢ P.
Non-ezample 3.1: Where Q = {1,2,3}, P = {0,{1,2},{2,3},Q} is not a pi-system since
{1,2}n{2,3} = {2} ¢ P.

Definition 3.12. A-system: A collection of sets £ from a non-empty set €2 is a lambda-
system provided L is closed under compliment and countable disjoint union. That is, £ is a

lambda-system if whenever Ay, Ay, --- € L are disjoint, we have |4 A; € £ and A{ € L.
i=1

Example 3.4: Where Q = {1,2,3,4,5}, the set £ ={0,{1,5},{4,5},{2,3,4},{1,2,3},Q}
is a lambda-system (but not a pi-system (Definition 3.11, Page 22), since e.g., {2,3} =
{2,3,4}n{1,2,3} ¢ L, and not an algebra (Definition 1.9, Page 5), since e.g., {1,5}U{4,5} =
{1,4,5} ¢ L).

Non-example 3.2: Where Q = R, L = {(a,b) : a,b € R} is a pi-system (Definition 3.11,
Page 22) but not a lambda-system. For example, (1,2) and (3,4) are disjoint open intervals
that are both in £, but their union is not an open interval.

Definition 3.13. Semi-Algebra: A collection of sets S from a non-empty set 2 is a semi-
algebra provided § is closed under intersection and each compliment is some finite disjoint
union from S (even if the compliment is not in §). That is, S is a semi-algebra if whenever

Ay, Ay, Ay €8, we have A; () A; € S and A = 4 A;.
i=1
Ezample 3.5: Where Q={1,2,3}, S={0,{1},{2},{3}} is a semi-algebra but not an algebra
(Definition 1.9, Page 5).

Non-example 3.3: Where Q = N, § = {0, {1},{2}, ...} (the set of singletons) is a pi-system
(Definition 3.11, Page 22) but not a semi-algebra since every compliment of a singleton is
an infinite union.
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3.2 Theorems And Examples

Theorem 3.1. Consequences Of Expectations:
1. Respects dominance, if P(X <Y) =1 then E(X) < E(Y).
2. Respects equality, if P(X =Y) =1 then E(X) = E(Y).

3. Triangle Inequality, |E(X)| < E(]X]).

Proof. For 1, P(X <Y)=1 = P(Y-X>0)=1 = E(Y-X)>0 = E(Y)-E(X) > 0.
For 2, apply the proof of 1 twice.

For 3, —|X[<X<[X| = E(—|X]|) <E(X) <E(|X]) = -E(|X]) <E(X) <E(|X]). ®
Theorem 3.2. Expectations Of Simple Random Variables: Where X is a simple

random variable taking values z;, ..., x,, E(X) = > »,P(X = ;).

Proof. The proof of this and all the below verify that the specific type of random variable
meets the definition for expectations (Definition 3.6, Page 21). So let ¢ be any constant and
let X,Y : Q — R be any simple random variables.

Does E(X +Y) =E(X) + E(Y)? Label the elements in the codomain of X {zy,...,z,}
and the elements in the codomain of Y {yi,...,9ymn}. Then

E(X+Y)= Z 2P(X +Y = z) Definition of simple random variable
k=1

= Z Z(xl +y;)P(X =x;,Y =y;) Possibly many ways to get same z
i=1 j=1

S P =Y i)+ 3SR = Y — )

i=1 j=1 i=1 j=1

= sz]P( )+ Zyj =y;) = E(X) + E(Y)

Does E(cX) = cE(X) for all ¢ € R? If ¢ = 0 this is trivially true, so assume otherwise.
Then the finite list of elements in the image of X, call them z1, x5, ..., x, remain finite upon
being multiplied by ¢ (they are cxy, cxs, . .., cx,). By how we defined expectation for simple

random variables, E(cX)= > cz;P(cX=cz;)=c > z;P(cX=cx;)=c > x;P(X=x;)=cE(X).
i=1 i=1 i=1

Does the definition respect non-negativity? If P(X > 0) = 1, then :r;l, ..., T, are all
greater than zero. Then for every i € [1,n], z;P(X = z;) > 0. So E(X) = Z x; ( =x;) >
0. So we have verified linearity and negativity, which proves that our deﬁmtlon for simple

random variables fits. |
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Theorem 3.3. Expectations Of Bounded Random Variables: Where Y is bounded,
use approximation and define the expected value of Y as E(Y) = sup E(X)= inf E(X).
X)S(iggle X)s(lgl}p;le
Proof. Since simple random variables are bounded, we need to make sure this definition
agrees with the definition we gave for simple random variables. If Y is simple, then by the
sup part of the equation, the expectation as defined by bounded random variables is at least
as big as the expectation as defined by simple random variables. On the other hand, by the
inf part of the equation, the expectation as defined by the bounded random variable is at
most as small as the expectation as defined by simple random variables. So the definitions
agree.

First, we must prove that the definition is valid (i.e. that the supremum and infimum
actually agree). Consider any simple random variables X, X5 such that X; <Y < Xo.
Expectations respect dominance (Theorem 3.1, Page 23), so E(X;) < E(X3). Since this
holds regardless of the choice of X;, X5, sup E(X) < inf [E(X). For the other direction,

Xsimple Xsimple
X<Y X>Y

let ¢ > 0 be given and partition € into the sets Ay = {w € Q: ke <Y(w) < (k+ 1)e}.
Consider the random variable X7 = ) kely,. By the way Q is partitioned, any w € Q is in
k

exactly one Ag. So X;(w) = ke whenever ke < Y(w) < (k+ 1)e (note X; is not necessarily a
constant because the k is changing). We have X; <Y < X; +¢. Further since Y is bounded,
there are only finitely many Ax’s needed to cover €2, and thus X is simple. So we see our
definition is valid by taking € to zero and observing:

sup E(X) > E(X;) X is a simple random variable less than Y
Xsimple
X<y =E(X,+¢)—¢ Simple expectations are linear

" Xsimple
X>Y

> inf E(X)—¢ X;+c¢is asimple random variable greater than Y

Now that we’ve proved the definition is both valid and matches previous definitions, we
can move on to proving it meets the criteria for expectations. So let Y; and Y3 be bounded
random variables and ¢ € R a non-zero constant.

Is E(Y: + Ys) = E(Y]) + E(Y2)? If X3, X5 are simple random variable such that X; <Y}
and Xy < Ys, then by the supremum definition and the linearity of simple expectations,
E(Y1+Y:) > E(X; + Xo) > E(X;) + E(X3) > E(Y)) + E(Y2). On the other hand if X, X,
are simple random variables such that X; > Y; and X5 > Y5, then by the infimum definition

and the linearity of simple expectations, we get the reverse inequality. Is E(cY;) = cE(Y;)?
If ¢ >0, then E(¢Y;) = sup E(cX)= sup cE(X)=c sup E(cX)=cE(Y3). If ¢ <0,

cXsimple Xsimple Xsimple
eX<cYi X<Y; X<Y;
then E(cY;) = sup E(cX)= sup cE(X)=c inf E(X)=cE}).
cXsimple Xsimple Xsimple
cX<cY X>Y; X"

Does the definition respect non-negativity? If P(Y > 0) = 1 then the constant random
variable X = 0issimple with X <Y, soE(Y) > E(X) = 0 from the supremum definition. W
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Theorem 3.4. Expectations Of Non-Negative Random Variables: Where Z is a non-
negative random variable, use truncation and define E(Z)=sup {E(Y") : 0<Y <Z, Ybounded}.

Lemma 3.4.1. If Z is non-negative, then E(Z)= lim E(Z A n) (where Z A n denotes the
n—oo

minimum between Z(w) and n). For every n, we know Z A n is bounded and non-negative.
For any fixed n, (Z An) < Z, and, since expectations respect dominance, E(Z An) < E(Z).
Since this relationship holds for every n, limsupE(Z An) < E(Z). On the other hand, if

n—oo
Y is a bounded, non-negative random variable such that ¥ < Z, then we can find a m

large enough such that P (Y < m) = 1. In other words, we have P ({Y < Z} n{Y <m}) =

P(Y <ZAm) =1 and thus E(Y) < E(Z A m). Since this relationship holds for every

n>m, E(Y) <liminf E(Z An). Taking the supremum of the ¥”’s and in in conjunction with
n—o00

the previous inequality, we have proved the result.

Proof. We first need to verify that this definition agrees with the definition we gave for
bounded random variables if those bounded random variables are also non-negative. If 7 is
bounded and non-negative, then by the new definition, the expectation of Z is at least as
big as the old definition (because it is the supremum). On the other hand, if Y is any other
bounded non-negative random variable less than Z, then by the dominance of expectations,
E(Y) <E(Z) (in light of the old definition), and then taking the supremum of the left-hand
side, we see the expectation with the new definition is at most the expectation with the old
definition. So the definitions agree.

Now we aim to prove linearity and non-negativity. Let Z; and Z5 be non-negative random
variables and ¢ € Ry a real constant (we can ignore the case where ¢ < 0 since the random
variables are non-negative).

Is E(Z1 + Zy) = E(Zy) + E(Z2)? Observe E(Z; + Z3) < E(Z;) + E(Z,) since

E(Z, + Z5) = nlggoE((Zl + Z3) An) By Lemma 3.4.1
SJLIEOE((Zl/\n)—i—(ZQ/\n)) IfZ,+Zy,>nbut Z; <nand Z, <n
= nh_}rgo E(Zy An)+E(Zy An)  Properties of bounded random variables
=E(Z,) + E(Z,) By Lemma 3.4.1

Now let Y7 and Y5 be bounded non-negative random variables with Y} < Z; and Y, < Zs.
Then E(Z; + Z5) > E(Y1 +Y2) = E(Y1) + E(Y2) and taking the supremum on the right gives
E(Z1 + Z3) > E(Z,) + E(Zs).

Is E(cZ) = cE(Z)? By definition, E(cZ) = sup{E(cY) : ¢Y < ¢Z} where ¢Y is bounded
and non-negative. We’ve proved that bounded random variables preserve linearity, so this
is equivalent to csup{E(Y) :Y < Z,Y bounded and non-negative} = cE(Z) as desired. It
is clear P(Z >0) =1 = E(Z) > 0since each YV in E(Z) = {E(Y) : Y < Z} where Y is
bounded and non-negative is itself bounded, and we already showed that bounded random
random variables preserve non-negativity. Since E(Z) is the supremum of these non-negative
expectations, E(Z) is non-negative. [ |
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Theorem 3.5. Expectations Of General Random Variable: Where X is a general
random variable, use partitioning and define E(X) = E(XT) — E(X ) so long as the right-
hand side isn’t oo — co. Here, the positive part of X is denoted X+ = max {X,0} and the
negative part of X denoted X~ = max {(—X),0}. Since both of these random variables are
non-negative, and functions of random variables are random variables, expectation here is

well defined.

Proof. Does this definition agree with previous definitions? If X is non-negative, then
P(X~=0)=1,s0 E(X)=E(XT)— 0 as desired.

For generic X and Y, does E(X +Y) = E(X) + E(Y)? Observe:

(X +Y) = (X +Y) =(X+Y)] = [(X)+ () = (X" = X)+ (V" =Y
(X+Y) "+ X +Y =XT+YT +(X+Y)”
E(X+Y))+EX ) +E(Y ) =EX)+EYT)+E(X+Y)")
E(X+Y)")—E(X+Y) ) =EX")—E(X)+E(Y") —E(Y")
E(X +Y)=E(X)+E(®Y)

For any ¢, is E(cX) = cE(X)? If ¢ > 0, then E(cX) = E(cXt) —E(cX ™) = ¢(E(X™)
E(X7)) = cE(X). Similarly if ¢ < 0, then E(cX) = E(cXT) — E(cX™) = —cE(X™) +
E(XT) =c(E(XT) —E(X")) = E(X).

Does the definition respect non-negativity? If P(X > 0) = 1, then P(X~ =0) = 1 and
so E(X7) =0 and we get E(X) =E(X")—0 > 0 as desired and we’ve proved our claim. W

Lemma 3.5.1. If £ is both a A-system and a m-system, then £ is a o-algebra.

Proof. We need to show L is closed under countable union (as opposed to just countable

disjoint union). So let A, Ay, --- € L be given. Consider the events A] = A;, A} = A2N AS,

Ay = A3N A5 N A7, etc. We know these events are in £ as each of the compliments are in £

(since L is a lambda-system) and as each of the intersections are in £ (since L is a pi-system).
oo

Since each of these new events are disjoint, by the properties of lambda-systems, 4 A, € L.

=1
o0 o
However by the way we defined the A! events, [ A, = |J A; and we have our result. [ |
i=1 i=1

Lemma 3.5.2. The intersection of lambda-systems is a lambda-system.

Proof. Let L£; and L5 be lambda-systems and let Aj, As,--- € L1 N Ly be given. Since
A, € Ly, Af € L,. Likewise since A, € Lo, Aj, € Lo. So Af € L4 N Ly; it is closed under
compliment. Likewise since the disjoint union is in both £; and L,, it is in the intersection W

Lemma 3.5.3. Where £ is a lambda-system and A € £, L4 = {B€Q: ANBe€ L} is a
lambda-system.

Proof. First see that £, is non-empty since QN A=A € LsoQ € L.
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Next see L4 is closed under compliment. Consider any B € L£4. We want to show
B¢ e Ly, ie that BN A€ L. Since A € L and L is a lambda-system, A¢ € £. Then since
A¢ and AN B are disjoint elements in £ and £ is a lambda-system, A°U (AN B) € L. Then
(A°U(ANB))° € £ and by DeMorgan’s Laws, AN (A°UB°) = ANB° € L. So L4 is closed
under compliment.

Finally see L 4 is closed under countable disjoint union. Consider disjoint By, By, --- € L4.

We want to show 4 B; € L£4. This is equivalent to showing |J(B; N A) € L. Since each
=1 i=1
B; € L4, by the construction of L4, each (B;NA) € L. But then since £ is a lambda system

and each (B; N A) is disjoint, |J(B; N A) € L as desired and we’re done. [
i=1

Theorem 3.6. Dynkin’s w-A Theorem: If P is a pi system and £ a lambda system such
that P C L, then o(P) C L. This says that although £ may fail to be a sigma-algebra, we
may be able to find a portion of £ that is a sigma-algebra.

Proof. Consider a pi-system P and a lambda-system £ such that P C £. Call £’ the smallest
lambda-system containing P. If we can show L’ is a sigma-algebra we will have our results
since o(P) C L' by the minimality of o(P) (from the perspective of sigma-algebras) and
since £’ C L by the minimality of £ (from the perspective of lambda-systems). By Lemma
3.5.1, it suffices to show L' is a pi-system.

If Ae P C L', then for all Be P,AN B € P C L' by the definition of pi-system. So for
any B € P, B € L4, which we showed is a lambda system in Lemma 3.5.3. But L’ is the
smallest Lambda system containing P. So L' C L4.

On the other hand, if C' € £, then from the above argument, C' € L4 and also A C L¢
for every A € P. So P C L¢, and again by the minimality of £, P C £ C Lc. Since
this holds for any C', from how L¢ is defined, for any two events X,Y € L', we must have
X NY € L as desired. [ |
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3.3 Problems

Problem 3.1) Let A > 0. Recall that X is said to have a Poisson(\) distribution
if P(X = k) =e X for k € {0,1,2,...}.

a. Show that E(X) = A (For this reason, A\ is called the mean parameter).

Recall the Taylor Series expansion e = ) ‘% Then using the formula for expectations:
n=0
> Nee—A OO ANE—Te—A
E(X) = Z k - T Z k - — Goal is to put in the form of Taylor Series above
k=0 k=0
. e k)\k_l
= )Xe Z I Terms don’t depend on summand
k=0
o0 k’)\k_l
=Xe o Limit change doesn’t alter sum
k=1 ’

= e Z =] = e Z A Simplifying and substituting n = k — 1
=Xe et =\ Taylor Series
b. Compute V(X).

We can compute the variance as V(X) = E(X?) — E(X)?, so first need to find E(X?).
Using a similar method as above, see that:

OO AF—1
E(X?) = Xe™ Z k- Same as part a with one more k£ term

o0 k-1 o0 k-1
=X Z(k -1)- h - ; h) Goal is to put in form of Taylor Series

k=1
> )\kfl 0 )\kfl

=X Z — T Z Simplifying
p (k—2)! p ( !

o )\k*Q oo )\k,
= e (AZ (2] -+ Z = 1)!> Limit change doesn’t alter sum

=X AZ )l + Z —) Substitutingn =k —2and m =%k — 1

Then using part a and the variance formula, V(X) = (A2 + \) — A2 = \.
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Problem 3.2) Let X and Y be any random variables on the same probability
space. Show that E(|X+Y|) < E(|X|)+E(]Y]) and E(| X =Y |) < E(|X|)+E(|Y]).

For the first part, see:

IX +Y| < |X|+|Y] The regular triangle inequality
E(|X +Y]) <E(X|+ Y] Expectations respect dominance
E(|X +Y]) <E(X|) +E(|Y]) Expectations are linear

For the second part, see:

|IX —-Y|<|X|+ Y| The regular triangle inequality
E(|X -Y]|) <E(X|+ Y] Expectations respect dominance
E(|X —Y]) <E(|X]|) + E(]Y]) Expectations are linear

Problem 3.3) Let Z be an integrable random variable. Show that for any € > 0,
there exists a simple random variable X such that E(|X — Z|) < e.

Let € > 0 be given.

Since Z is integrable, E(Z) = E(Z") — E(Z~) with each term finite and non-negative.

From how we defined expectations for non-negative random variables, E(Z%) = sup E(Y).
0<Y<Z
Ybounded

By the definition of supremum, there exists non-negative bounded random variables Y; and

Y such that ¥; < Z* and Y < Z~ and such that E(Z%) < E(Y))+ 5 and E(Z7) < E(Y2)+ 5.
In particular, E(|Z7 —Yi]) < ¢ and E(|Z7 - Y3|) < 5.

Since Y7 and Y, are both bounded, from how we defined expectations for bounded random
variables, E(Y;) = sup E(X). Then we can likewise find simple functions Xj, Xy such
X p

Xsi?nplle
that E(Y;) < E(X)) + £ and E(Yy) < E(X,) +

E(|Y2 — X5]) <

In particular, E(|Y; — X3|) < £ and

£
4° 4

£
4

Since X; and X, are random variables, so too is X = X; — X5. Now observe that

E(|1Z - X)) =E(Z" - Z" - Xi + X3|)
=E(|Zt-Z - X1+ Xo+Y1 -V + Y, - Y, Creatively add zero
=E(|ZT-V1+Yo—Z +Y - X1+ X5 - Y3 Reorder terms
<E(Z" -V +E(Ya— Z7|) + E(|Y1 — X1]) + E(J] X2 — Y3|) From Problem 3.2
<t + c + c + - € Desired result
—4 4 4 4
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Problem 3.4) Let X be a non-negative random variable with E(X)=0. Show
P(X=0) =1.

By the non-negative assumption of the proof, P(X < 0) = 0. Due to this assumption,
X > %IL {X@)>1} for any n € N. The expectation of an indicator is the probability of
the event. Then by the expectation assumption of the proof and since expectations respect
dominance and linearity, we have:

1 1 1
0=EX)=z E(ﬂ{xw»;}) = #P(X > ﬁ)
This inequality implies that P(X > %) = 0. Since this holds for any n € N, choosing
a strictly monotone increasing sequence of n and employing continuity from below gives us

that P(X > 0) = 0. To be explicit, label A; the event that X > 1, Ay the event that X > %,

Aj the event that X > 3, etc. Then P(X > 0) = lim P(X > 1) =P( [J 4; ] = 0 where
n—o00 i=1
the last equality follows from the union bound and minimality of IP. Then by the law of total

probability, P(X = 0) = 1 since we have shown P(X < 0) =P(X > 0) =0.

Problem 3.5) Prove that a probability measure is uniquely determined by what
it does on a generating mw-system. Concretely, if IP; and P, are two probability
measures on (€2, F) such that P;(A) = IP5(A) for all A € P, then IP,(B) = IP»(B)
for all B € o(P).

Consider the set L ={B € o(P) : P1(B) = Py(B)}. By assumption of the proof, P C L
since Py (A) = Py(A) for all A € P C o(P). So if we can show L is a A-system, we will have
o(P) C L by the m — X Theorem (Theorem 3.6, Page 27). By the construction of L, this will
prove our conclusion (if the measures agree on all of L, they also agree on a subset of L).

We go directly for the definition, and thus prove that L is closed under both compliment
and countable disjoint union. So let A be any set in L and A;, As, ... be arbitrary disjoint
sets in L. Since P1(A) = Py(A), by the law of total probability and compliment rules,
Pi1(A%) = 1 —=P1(A) = 1 —Py(A) = Py(A°); L is closed under compliment. Also, by
countable additivity, ]Pl< ¥ An) = > Pi(4,) = > Py(4,) = ]PQ( ¥ An) (the middle

n=1 n=1 n=1 n=1

equality follows since P(A;) = Po(A;) for all 4); L is closed under countable disjoint union.
So L is indeed a A-system and we have our result.
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Problem 3.6) Let X and Y be integrable random variables with P(X <Y) =1
and E(X) = E(Y). Show that P(X =Y) = 1.

Rearranging the probability, we have ]P((Y -X) > 0)) = 1; Y — X is a non-negative
random variable. Using properties of expectations and the assumption of the proof, we
have E(X)=E(Y) = E(Y)-E(X)=0 = E(Y — X)=0. Then using Problem 3.4,
P(Y — X =0) =1 as desired.

Problem 3.7) Let X be uniformly distributed on [0,1]. Compute the expected
value of the following random variables:

a. e’X

The Riemann-Stieljes formula is ]E( ) f f ) dF,(t). The support of X is [0, 1]
so we can reduce our problem to E(f(X)) = F,(t). The CDF of a uniform random
variable X is Fx(t) = ¢ :> dFx(t) = 1. Here f() = €. So our problem becomes
IE( ) fol 5.1 dt = L 5t’ _ egl_
b. 1/X

We again use the Riemann-Stieljes formula. E(+) = fol 1dt = lim In |t|| =0—(—00)=00.

y—0+t

c. cos(mwX)

We again use the Riemann-Stieljes formula. E(cos(7t)) = fol cos(mt) dt = Lsin(t) ‘(1) = 0.

d. [3.5X]

The floor function indicates the largest integer less than or equal to the value. So here
the random variable takes values 0 when 0 < %X (w) <1or equivalently when 0 S X < %
Likewise it takes values 1 when 1 < 7X (w) < 2 or equivalently when <X < —, values 2
when 2 < IX(w) < 3 or equivalently when 2 <X <% and values 3 when 2 < 7X( ) <3
or equivalently when & -<X<L

Since %X is a simple random variable, we can just use the formula for expectations of

3 2
simple random variables, E(1X) = ;)i P(IX =1i) = > (i-3)+(3-3) =2

=0

e. max(X,2/3)
2
We can break up the Riemann-Stieljes formula and write E(max(X,2)) = [3 2dt +

1 _ [o3 1,2|1 4y _ 13
fgtdt—[f‘S}Jr[itQ‘g] st (G- 1% =%
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4 Norms And Important Inequalities

4.1 Definitions

Definition 4.1. Convex: A function whose second derivative is everywhere positive. Equiv-
alently, a function f : R — R such that for all ¢ € [0,1] and for all z,y € R, we have
fltz+ 1 —t)y) <tf(x)+(1—1)f(y).

Definition 4.2. Raw Moment: The n'" raw moment of a random variable X is the value
E(X™).

Definition 4.3. Central Moment: The n'® central moment of a random variable X is the
value E [(X — E(X))"].

Ezample 4.1: The 2" central moment is the variance (Definition 3.7, Page 21).

Definition 4.4. Stangard Moment: The n'™ central moment of a random variable X is
the value E [(%) ] (where 0 = \/V(X), the standard deviation).

Ezxample 4.2: The third standard moment is the skewness, which measures the symmetry
of a distribution of a random variable. A random variable that is skewed to the right (the
tail of the distribution is longer to it’s right) will have a positive skew, and a random variable
that is skewed to the left will have a negative skew.

Example 4.3: The fourth standard moment is the kurtosis, which measures how heavy-
tailed a distribution is (how likely rare events are to occur). In Problem 4.2, Page 37, we
show that the kurtosis of the distribution of a normal random variable is always 3. The
excess kurtosis measures the kurtosis of a distribution of a random variable in relation
to the normal distribution— a random variable with kurtosis greater than 3 (excess kurtosis
greater than zero) indicates that the distribution of the random variable is leptokurtic
(fatter-tailed than a normal distribution). A random variable with kurtosis less than 3
(excess kurtosis less than zero) indicates that the distribution of the random variable is
platykurtic (thinner-tailed than a normal distribution).

Definition 4.5. Moment Generating Function: The moment generating function (MGF)
for a random variable X is Mx () = E(e!*). The name of the function comes from the fact
that the n'" derivative of the MGF with respect to t, evaluated at 0, is the n'® raw moment.

Definition 4.6. P-norm: The p norm of a random variable X is || X, = E(|X|p)l/p. By
Jensen’s Inequality (Theorem 4.3, Page 33), if p < ¢, then || X||, < [| X,

Definition 4.7. LP Space: Fix a probability triple (2, F,P). The space of random vari-
ables with finite p-norm is denoted LP(P) = {X : Q@ — R : || X]||, < oco}. Since p < ¢ =
1 X, < | X|lg, LP(P) D LY(P) (the spaces get more exclusive as p grows). In that sense,
the most exclusive space is L*°. In the conditions for which X belong in L*°, define
| X ||oo =inf{L >0:P(|X| < L) =1}.

Ezample 4.4: Where X is a random variable, V(X) < oo if and only if X € L*(P). If
X € IL2(P), then E(|X|?)"? < 00 = E(]X|?) < oo by the definition of L2. So since
E (| X[|*) = E(X?), we know that V(X) = E(X?)—E(X)? must be finite. The same reasoning
works going the other direction.
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4.2 Theorems And Examples

Theorem 4.1. Markov’s Inequality: For any (p > 0)-time integrable random variable X
and for any ¢t > 0, P(|X|? > t) < w_

Proof.
P XP >1t) = E(1yxp>sn) Expectation of indicator is probability of event
< E<1{|X|p>t} |)§|p) Indicator is only one when XP? >1
<E (@) Removing cases where could be zero
= w Linearity of expectations

Theorem 4.2. Cheyshev’s Inequality: For any random variable X € L*(P) and for any
t>0, P(X -E(X)| > 1) < 75

Proof. Squaring the inside of the probability, we have P(|]X — E(X)|*> > ¢*). Then from
Marvov’s Inequality (Theorem 4.1, Page 33), P(|X —E(X)]* > t?) < EX-EX))? _ V)

t2 t2

Theorem 4.3. Jensen’s Inequality: When f is convex, f(E(X)) < E(f(X)) for any
integrate random variable X.

Proof. Since f is convex, the left derivative at any point is no greater than the right derivative

at the point. In particular, the left derivative at E(X), call it L = hlir(l)q f(E(X))_i(E(X)_h), is
—0+

FEX)+R)—f(E(X))

. :

less than or equal to the right derivative at E(X), call it Ly = hlir(r)l
—0+

Let a = (£4£2) and consider the real-valued function (z) = a(z — E(X)) + f(E(X)).
See that I(z) < f(x) with equality holding at z = E(X). This can be shown in cases.

Since f is convex and a is the midpoint between L; and Lo, for all A~ > 0, we have
f(E(X))_i(E(X)_h) <a< f(E(X)J“h]z_f(E(X)). In the first case, x > E(X), choose h = = — E(X)
and see a(z — E(X)) < f(E(X) 4 (z — E(X))) — f(E(X)) = f(z) — f(E(X)) and so I(z) =
a(x —E(X)) 4+ f(E(X)) < f(z). In the second case, x < E(X), choose h = E(X) — z and
the same arithmetic follows.

Since l(x) < f(z) and expectations respect dominance (Theorem 3.1, Page 23), we reach
our conclusion: [E(/(X)) = E(aX —aE(X) + f(E(X))) = f(E(X))] <E(f(X)) [

Corollary 4.3.1. Variance is always non-negative. Take f(x) = 2% which is clearly convex.

Then E(X)? = f(E(X)) < E(f(X)) = E(X?) and so V(X) = E(X?) —E(X)? > 0.

33



4.2 Theorems And Examples Flaherty, 34

Theorem 4.4. Holder’s Inequality: Given p € [1, o], let ¢ be such that %—F% = 1. Then
XYl < IX 1Y ]l

Proof. 1f either || X||, or ||Y||, is zero, then so too is E(|XY]) and the result holds. So assume
| X, and ||Y]|, are both strictly greater than zero.

Where y > 0 is some fixed constant, consider a function f(z) = % + % — xy defined

for z > 0. Since f'(z) = 2P~! — y, f has a local extrema at z = yﬁ, call it zy. Since
f"(z) = (p—1)zP"2 >0 (since p > 1 and = > 0), f(z¢) is a minimum.

zP q = q 1 q q
Further, f(xg) = 3+ & —woy = Y=+ 0 — (yr )y = L+ 5 —y" =y'(3 + 1) —y" =0

since %+§ = 0 and thus % =1 —% = q= p%l. As ¢ is the minimum of f and f(xy) =0,
the term being subtracted, xy, must never be greater than the terms being added, %p + %.

_ x|
IX]

Y
and y = ”Y”| . From the above, we see:
q

X[ Y] <<|§up>p (u%)q

+

Now let

bS]

IXT, 170, = q
1 E(|X|P E(|Y|?
B(xy)) < BUXP) | BV
XTIV, AXTE " alVT
1 IXIE IV
e XY € T
XTI, AIXIE " alV
1 1 1
e XY <
XTI, p g

XY < [1X1plY 1lg

Corollary 4.4.1. Cauchy-Schwarz: The special case of Holder’s Inequality where p = ¢ =
2 is the Cauchy-Schwarz Inequality.

Proposition 4.1. (1+z) <e” and (1 —x) < e~ * for all x € R,.

Proof. Using Taylor Series expansion, we have (1 +z) < (1 +z + "Z—? +---) =€ [ |
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Theorem 4.5. Minkowski’s Inequality: [|X + Y|, < [|X|, + [|Y|l,-

Proof. Recall that the Holder conjugate of p € [1, 00| is the ¢ such that % + % =1;ie q=

ﬁ = i = 57 Next keep in mind the Holder inequality, that E(|XY) < [|X[], - [[Y][,.

Returning to the problem at hand, we see the following:
E(|X +Y]P) =E(| X +Y|- [ X+ Y[
<E(IX]- [ X4+YP '+ Y] [X+Y]PT Triangle inequality on |X + Y|
=E(|X|- [ X +YP")+E(|Y|-|X +Y[""") Linearity of expectations
<X X +Y Py + 1Y ], 11X +Y[P7Y|, Holder’s Inequality on both terms
= (IX1lp + 1Yllg) - 11X + Yl Grouping terms

= (I X]l, + IY]ly) - E [(|X + Y|p_1)11%1] o The Holder conjugate ¢

p—1
p

= (IX1lp + IYllg) - E(X +Y7) Simplifying

Since 222 — 1 =221 — 2 — =L after dividing terms, we see:
p p p p
1
—1
E(|X +Y[)»

1
< (IX1p, + 1Y) = E(X +Y )" < (1X]l, + Y1)

Theorem 4.6. AM-GM Inequality: The arithmetic mean is always at least as large as

the geometric mean. More formally, where py, ps, ... are real numbers such that > p; = 1,
o0 oo =l

then for any non-negative real numbers xi, 2, ..., we must have »_ x,p, > [] 22"
n=1 n=1

Proof. Fix an € N, a set of positive real numbers 2 = {x1, 29, ..., 2,}, and a simple random

variable X : Q@ — R given by X(z;) = In(z;) with P (X = In(z;)) = p;. Now consider the
function f(x) = e” and with the help of Jensen’s Inequality (Theorem 4.3, page 33) observe:

FE(X)) <E(f(X)) Jensen’s Inequality
3 In(z; )P(X=In(x; n
cE(X) — e;l (ro)P (=) < |E(eY) = Zeln(‘”") -P(X =1In(z;))| How f was defined
i=1
H en@ip < Z i Di Properties of exponential
i=1 i=1
H < Z T; - i Desired result
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Theorem 4.7. Payley-Zygmund Inequality: For any non-negative random variable X

and any 6 € (0,1), P(X > 0E(X)) > (1 - 9)2%82)

Proof. Observe:
E(X) = E(XTix<omo0y) + E(X T {xs0mx)))

< OE(X) + E(X1ix>om(x)}) Properties of indicator function

< OE(X) +E(X?)? - E(L Tx>0E(x)})

= OE(X) + E(X?) - E(Lospm0x))

=

Holder inequality

N

Square of 0 or 1 is still 0 or 1

Then after recalling the expected value of the indicator is the probability of the event:

E(X) — E(X) < E(X?)2P(X > #E(X))2  Subtracting
E(X)? —20E(X)? + 0*E(X)? < E(X?)P(X > 0E(X)) Square both sides
E(X)? .
(1-0)? E(X7) = <P(X > 0E(X)) Group for desired result
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4.3 Problems

Problem 4.1) Assume E(|X|) < oo. Show that t — E [(X — t)?] achieves a unique
minimum at ¢ = E(X). That is, the expected value is the best deterministic
approximation of X with respect to L? error.

Using properties of expectations, we can write E [(X —¢)’] = E[X?—2tX — %] =
E[X? — E[2tX] — E[t?] = E(X?) — 2tE(X) + t*>. As a function of ¢, this equation has
a derivative of —2E(X) + 2t. When t = E(X), the derivative is zero, and so is an extrema.
When t > 0, the derivative is positive. When ¢ < 0, the derivative is negative. So the extrema
is a minimum and we’ve shown the result.

Problem 4.2) Compute the kurtosis of a normal random variable X with generic
parameters p and o?2.

The moment generating function (Definition 4.5, Page 32) of a random variable Y ~
N(0,t) is given by:

My (u) = E(e"Y) = /Re“yfy(y) dy = /Re“y\/;_me;(yf) dy

Let Z = X — p. Using the above derivation and repeated applications of the chain and
product rule, we see:

2 2 2 2 2 2
° duzMz( u) = (6% e 3 +uo? <u026 20) (02 +ulct) ™=

2,2

° dugMZ( ) (2uo-4) e T +(o'2+u ot <ua e ) 3u0 +u306) #
d* 4 9 & ulo? 5
.WMZ() (30 +3UU)€2 + (3uo® +u0)<uae2>

= (304 + 3u?0® + 3u?6° + u408) ez
. . (x—Ex)\* L Mz(0) 304
Then the kurtosis of X is: E (T) =E|(—F—7)|=E [L] = 3.
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5 Modes Of Convergence

5.1 Definitions

Definition 5.1. Convergence In Probability: A sequence of random variables X,, con-
verges in probability to a random variable X if for any ¢ > 0, lim P(|X,, — X| <¢) =1. We
n—oo

denote this X, — X. To be precise, X, — X if lim P {we Q:]X,(w) — X(w)| <e}) =1.
n—o0

Example 5.1: Consider the typewriter sequence, X,, = Il[n,2k nH,Qk], where for every n, k
kTR

is the unique integer where 2% < n < 2¥1 After X; = 1 the first random variables are:

lLw<?i lw>1 lLw<?t 1 11
XQ(W):{ B ,Xs(w)Z{ S ,X4(w)={ e = ,X5(w):{ w € [5:3]

0, else 0, else 0, else 0, else

Then X,, — 0 since P(|X,| >¢) =P(X, =1) =27 As n grows to infinity, k does as
well (since n < 2¥1) and so lim P(X, = 1) = lim 27% = 0.

n—00 k—o0

Non-example 5.1: The sequence Y,, = l[n mod 3 1) does not converge in probability. Unlike
3 b

the typewriter sequence, the “strip” under which Y,,(w) = 1 does not shrink to zero.

Definition 5.2. Almost Sure Convergence: A sequence of random variables X,, converges
almost surely to a random variable X, denoted X,, <% X, if P(lim X, = X) = 1. To be
n—oo

precise, this is saying X,, =2 X if P ({w € Q: lim X, (w) = X(w)}) = 1.
n—oo
Example 5.2: Consider the “escape to vertical infinity” sequence given by X, = nl {01}
Then for every wel0, 1], X,(w) =0 for all n > L, and so lim X, (w) = 0.
n—oo

Non-example 5.2: The typewriter sequence (Example 5.1, Page 38) converges in probability

but not almost surely since X,, never converges to a point (e.g. for any w € Q = [0,1]
limsup X, (w) = 1 but liminf X,,(w) = 0). In general, almost sure convergence is a stronger
n—00 n—00

result than convergence in probability (Theorem 5.1, Page 41).

Definition 5.3. Converges in LP: A sequence of random variables X,, converges in L? to
X, denoted X,, 25 X, if X € LP(P) and lim || X, — X||, = 0 (Definition 4.6, Page 32).
When dealing with p = 1, we may say “Xnn:oo;lverges in mean to X”. When dealing with
p = 2, we may say “X,, converges in mean-square to X”.

Example 5.3: Convergence in LP does not imply almost sure convergence. Take the “type-
writer” sequence (Non-example 5.2, Page 38). We know X,, converges in mean to 0 since
lim || X, — 0|y = lim E(]X,|) = lim 27% = 0 (since k is such that n < 2¥*1),

n—oo n—oo n—oo

Non-example 5.3: Convergence in probability (and therefore, convergence almost surely)
does not imply converge in LP. Take the “escape to vertical infinity” (Example 5.1, Page

38). We know that if X, Py X and if X ¥V then X “ Y. But in this example,
X, = 0 and yet for p =1, lim || X, — 0|, = lim E(|X,|) = lim n-1 = lim 1 =1+#0.
n—0o0 n—00 n—00 n—o00
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Definition 5.4. Convergence in Distribution (Weak Convergence): A sequence of

random variables X, converges in distribution to a random variable X, denoted X, 4 x , if
lim Fy, (z) = Fx(z) for all points « where the CDF (Theorem 1.3, Page 7) F is continuous.
n—oo

An equivalent definition is that X,, < X provided lim E(f(X,)) =E(f(X)) for all bounded
n—oo
and continuous f : R — R.

Example 5.4: We echo Example 2.5 and say that random variables and the distributions of
said random variables are distinct concepts— different random variables can have the same
distribution and a single random variable can have two different distributions (by changing
the probability measure relevant to the sample space). For example, where 2 = {H, T}
is the outcome of a single fair coin-flip, and where X and Y are random variables such
that X(H) = Y(T) =1 and X(T) = Y(H) = 0, then X(w) # Y(w) for all w € ©, and
yet X 2 Y. For this reason, convergence in distribution is substantially weaker than the
three convergence results above (convergence almost surely, convergence in probability, and
convergence in L”). Convergence in distribution doesn’t even require random variables to
be defined on the same probability space!

Take the following example. For every n € N, let (Q2,={1,...,n},F,=2% P) be a
probability space where P is the uniform measure (i.e. for all w € Q,,, P(w) = 2), and let
Xp 0 2, — R be the random variable such that X,(w) = #. Further consider a probability

space (2=[0, 1], F=B(]0, 1]),113) where P is the Lebegue Measure (Example 1.5, Page 5),
and let X : © — R be the random variable such that X(w) = w. Then X, 4 X even
though each X, is a discrete random variable and X is a continuous random variable. See

0, T < % 0, =<0
that Fy, (z) = L”—nﬂ, 1<z <1 and Fx(z) = {2, 0<xz <1, which converge by the
1, 1<z 1, 1<x

squeeze theorem as n — oo (since [z — 1 = 2=1] < L"n—zJ < ).

Definition 5.5. Vague Convergence: A sequence of random variables converges vaguely
if their distribution functions F,, converges to a monotone, right-continuous function F' :
R — [0,1], at all continuity points ¢ of F. Note that F' need not be a valid Cumulative

Distribution Function (it’s missing the condition that lim F(x,) = 1, for example).
n—oo

Ezample 5.5: “All mass escapes to infinity”. Let (2 = [0, 1], B([0, 1]), P([a, b])=b — a) be a
probability space, and for every n € N consider the random variable X, (w) = n + w. Then
the sequence of random variables converges vaguely to F'(x) = 0 since each random variable
is a uniform on a unit interval that slides further and further along the real line.

Example 5.6: “Some mass escapes to infinity”. Let (2 = [0, 1], B([0, 1]), P([a,b]) = b—a) be
1
) <3
a probability space, and for every n € N consider the random variable X, (w) = " clu < 3,
) 3 = w
0, <2
9 0, =<2
Then Fx, (r) = ¢ 2, 2 <z <n converges vaguely to F(z) =<, o<,
1, z>n 37 =7
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Definition 5.6. Tightness: A sequence of random variables {X,}, .\ are tight if for all
e > 0, there exists a,b € R such that P(X,, € [a,b]) > 1 — e. Equivalently, the sequence is
tight if there exists a,b € R such that Fx, (a) < e and Fx,(b) > 1 —¢e. Also equivalently, the
sequence is tight if there exists a M > 0 such that sup P(|X,| > M) < e.

Ezample 5.7: “No mass escapes to oo”. Let (2 = [0, 1],B([0, 1]), P([a, b]) = b—a) be a prob-

w< L

ability space, and for every n € N consider the random variable X, (w) = ;Z’ > ™. Then
) = w
0, <2
1 0, x<2
Fy,(x)=q1—+, 2<z <n converges weakly (and thus vaguely) to Fix(r)= L g
x
1 n<g ’ B

)

The property that this example has which Examples 5.5 and 5.6 don’t is the notion of
tightness. See a choice of @ = 2 and b > 1, yields P(X, € [a,b]) > 1 — ¢ since if b > n,
P(X, € [a,b]) =1, and if b < n, P(X,, € [a,0]) > P(X,, =a) > 1—-2>1—1>1-¢.
In general, tightness upgrades vague convergence to weak convergence (see Theorem 5.12,
page 46).
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5.2 Theorems And Examples

Theorem 5.1. Almost Sure Convergence Implies Convergence in Probability: If
X, ¥ X, then X, Py X. The converse is not true (Non-example 5.2, Page 38).

Proof. Since X,, ¥ X, we have P (limsup {we:|X,(w) — X(w)| >e} | =0, ie. the

n—o0

event that for all k& € N there exists an n > k such that | X, (w) — X(w)| > ¢ has probability
zero. Identifying “there exists” with union, and “for all” with intersection, we have:

0:]13‘<ﬂ U{wEQ:|Xn(w)—X(w)| >€})

k=1n=k

k—o0

= lim P (U {weQ:|X,(w) — X(w)| > 5})
> klggop {we Q: | Xp(w) — X(w)| >e})

The first step follows from Continuity From Above (Theorem 1.1, Page 7), since for all £,

(U {weQ:X,(w) — X (w)] >5}> 2 ( U {we:|X,(w) — X(w)| >5})

n=~k n=k+1

The second step follows from the fact that A; C [ J —, An. [ |

Theorem 5.2. Convergence In Probability Implies Convergence In Distribution:
If X, L X, then X, 4 X. The converse is not true (Example 5.4, Page 39).

Proof. Pick any point ¢t where Fx is continuous and let € > 0 be given. Observe:

Fx,(t)=P(X,, <t)=P(X, <t, X <t+e)+P(X, <t, X >t+¢)
<P(X<t+e)+P(X,<t,X >t+¢)
<Fx(t+e)+PX, - X<t-X,t—X < —¢)
< Fx(t+e)+P(X, - X < —¢)
< Fx(t+e)+P(X,— X]|>¢)

Since this holds for all € > 0, since Fly is right continuous at ¢, and since our assumption is
that limsup P(|X,,— X| > €) = 0, limsup Fy, < Fx. Using the same setup as above, we know

n—00 n—00
Fx,(t) > Fx(t —e) — P (|X,, — X| > ¢€) and so by left continuity have liminf Fx, > Fx. R
n—oo
Theorem 5.3. Convergence In LP Implies Convergence In Probability:

If | X, — X||, = 0, then X, %, X. The converse is not true (Non-example 5.3, Page 38)

Proof. Let ¢ > 0 be given. We want to show lim P(|X, — X| > ¢) = 0. Since p € [1,00),
n—oo

P(|X, — X| >¢) =P(]X, — X|? > ¢P). So by Markov’s Inequality (Theorem 4.1, Page 33),

we can write P(| X, — X| > ¢) < E(lXZ—;le). But since X, converges in L?, the numerator on

the right-side of the inequality becomes 0 in the limit and we’ve proven our result. |
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Lemma 5.3.1. There Are Only Countably Many Discontinuity Points In A CDF":
If g : R — R is monotone, then the set of discontinuities is countable.

Proof. Without loss of generality, assume ¢ is monotone increasing (otherwise replace the
arguments with —g). Denote the left limit of g at ¢t as g(t~) = hr& g(t—¢). Similarly denote
E—>

the right limit of g at ¢ as g(t*) = lir& g(t + ¢). The points of discontinuity are precisely
E—

the points where the left and right limits disagree; they are the set D = {t : g(t7) < g(t")}.

For any s,t € D with s < t, we have g(s™) < g(t7), so (g(s7),9(s™)) N (g(t7),g(t")) = 0.

Then {(g(q_), g(q*)) 1q € D} is a collection of disjoint intervals, each containing a distinct

rational number (since Q is dense in R). Since there are only countably many rationals, this
proves the lemma. |

Theorem 5.4. Slutsky’s Theorem: If X, 2 X and Y, Py ¢ where ¢ is a real constant,
then (X, +Y,) % X + ¢ and X,,Y, % cX.

Proof. Let t be any continuity point of F'x,. and € > 0 be given. Observe that:
PX,+Y,<t)=P(X,+Y,<t,Y,—c>—)+P(X,+Y,<t,Y,—c< —¢)

(Xn+Y,<t,Y,—c>—-)+P(Y,—c< —¢)
(Xn+c<t+e)+P(Y,—c< —¢)

VANVAN

P
P

Since Y, LN ¢, the right term vanishes as n grows large. By Lemma 5.2, we know that
there are only countably many discontinuity points, and so can send € to zero in a way that

Fx . is continuous at the point ¢ +¢. So since X, +¢ LNy gt ¢, limsup Fy, 1y, (t) < Fxi.(t).
n—oo
The same type of argument shows the limit inferior and we reach our result. |

Theorem 5.5. Bounded Convergence Theorem: If X, is a sequence of random variables
converging in probability to X and there is a constant L such that P(]X,| < L) =1 for all
n, then lim E(X,) = E(X).

n—oo

Proof. Let € > 0 be given. Then observe

[E(X, — X))

= [E((Xn — X)1x,-x1<e}) + E((Xn — X)L{x,-x|5e})| Exactly one indicator is zero
< ]E(‘(Xn - X)]l{|anX|§s}D + E(|(Xn — X)]l{\anX|>€}|) Triangle inequality for real numbers
< e+ 20 E(Lyx,xjs) X, — X] < [ X, +]X] <21
<e+42L-P(X,— X]|>¢) Expectation of indicator is probability of event
<e TLILIEOP(|XTL—X|§5):1:>TL1LI1201P(|Xn—X|>5):0
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Theorem 5.6. Fatou’s Lemma: If X, is a non-negative random variable for all n € N,
then liminf E(X,,) > E(liminf X,).
n—oo n—o0

Proof. The limit inferior is a supremum of infimums. So liminf X,, = sup inf X,,. For
n—00 n>1 m2n

notational ease, call Y,(w) = ir;f Xm(w). Then X,(w) > Y,(w) and so E(X,) > E(Y,)

for every n; liminf E(X,,) > liminf(Y,). It thus suffices to prove liminf(V,) > E(Y) where
n—o0 n—o00 n—0o0

Y =liminf X,,.

n—00

We do so by way of truncation (i.e. reducing the non-negative case to the bounded
case). For every L € R, liminfE(Y) > liminfE(Y, A L). Since (Y, A L) = (Y A L)
n—oo

(Y, = irif Xon] N\ [Y = sup 1nf X,n] since the supremum can only grow smaller as points
m=n n>1m2n

in the sequence are removed) and since P(|Y,, A L| < L) = 1, we can apply the Bounded
Convergence Theorem (Theorem 5.5, Page 42) to say liminf E(Y A L) = E(Y A L). Taking
n—oo

L to infinity and applying Lemma 3.4.1, page 25, this is precisely E(Y"). |

Theorem 5.7. Monotone Convergence Theorem: If {X,} _ are non-negative mono-
tonically increasing random variables such that X,, % X, then lim E(X,) = E(X).
n—oo

Proof. By Fatou’s Lemma (Theorem 5.6, page 43) and the convergence of X,,, lim E(X,) >
n—oo
E(lim X,) = E(X).
n—oo

On the other hand, since X, is a monotonically increasing sequence of random variables,
X, < X for all n and then since expectations respect dominance, E(X,) < E(X) and so
limsup E(X,,) <E(X). Taken together, this proves our result. [

n—oo
Theorem 5.8. Dominated Convergence Theorem: If X, converges almost surely to X
and if Z is an integrable random variable such that P(|X,| < Z) = 1 for all n € N, then
E(X,) converges to E(X)

Proof. Since X,, + Z is non-negative by assumption, X,, + Z is a non-negative random vari-
able that converges almost surely to X + Z. By Fatou’s Lemma (Theorem 5.6, page 43),
liminf E(X,+72) > E(hm mf Xn+Z) = E(X+Z) and after using the linearity of expectations

n—oo

and canceling, we see lim 1nfE(X ) > E(X).
n— o0

On the other hand, —X,, + Z is also non-negative by assumption and so we can repeat
virtually the same argument. Again by Fatou, liminf E(—X,, + Z) > E(liminf - X,, + Z) =
n— o0 n—oo

E(—X+Z7) and after using the linearity of expectations and canceling, we see lim inf E(—X,) >

n—oo
E(—X). This is the same as saying — lim sup E(X,,) > —E(X) and equivalently lim sup E(X,,)
n—00 n—00
E(X). So when seen with the above, this proves our result. |
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Theorem 5.9. Conditions For Convergence In Probability: A sequence of random
variables X, converges in probability to the random variable X if and only if every subse-
quence has a further subsequence that converges almost surely.

Proof. Assume X, Ly X. We want to show the existence of a sequence {ng} such that
X, &% X as k — oo. By the definition of convergence in P, lim P(|X, — X| >¢) = 0 for
n—oo

all positive . So choose ny such that ny, > ng_y and P(|X,, — X| > 1) < 5. Then we have

> ]P(]Xnk - X| > %) < 00, and applying the first Borel-Cantelli Theorem (Theorem 7.1,
k=1
Page 60), P(|X,, — X|>1 1io.) =0, ie. for all large k, |X,, — X| — 0 almost surely.

Now assume any generic sequence {Xnkl } converges almost surely and let € > 0 be given.
We'd like to show that lim P(|X,,—X| > ¢) = 0. Call the inside of this limit p, for notational
n—oo

ease. Suppose there is not convergence in probability. Then by definition, there exists a 6 > 0
and a sequence {n;} such that p,, > ¢ for all k, i.e. for all k € N, P(|X,, — X|>¢) > 4.
But this means that no subsequence can even converge in probability, never mind converge
almost surely. This gives us our contradiction and we’ve proved our claim. |

Theorem 5.10. Skorohod’s Representation Theorem: If X, 4 X , then there exists
random variables Y,, and Y such that Y, < X, Y < x ,and Y, 25 Y.

Proof. Let U ~ Unif(0,1). Define fx, to be the quantile function (Definition 2.7, Page 15)
for Fx, and then the coupling we seek will be given by Y, = fx, (U,) and Y = fx(U). We
know that Fy, = Fy and Fy = Fx. So all that remains to be shown is Y,, = Y. Since
the quantile function is non-decreasing, we know it’s set of discontinuities, call it D, is finite
(Lemma 5.3.1, Page 42). So as P(U € D) = 0, it suffices to show fx, (u) — fx(u) whenever

ué¢ D.

To do so, we can check two inequalities: liminf fx (u) > fx(u) and limsup fx, (u) <
n—0o0 N—00

fx(u). For the first inequality, consider any ¢ < fx(u) where Fx is continuous. Then since

t < fx(u), Fx(t) < u, and since Fy is continuous, fx, (t) — Fx(t). Then Fx (t) < u for all

large enough n, and thus ¢t < F, (u) for all large enough n, which proves liminf fx, (u) > t.
n—oo

By the above lemma (Lemma 5.2, Page 42), since the points of discontinuity are countable,
we can take ¢ arbitrarily close to f(u) and we have our desired inequality. A near identical
argument gives the second inequality. |
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Lemma 5.10.1. Portmanteau Lemma: There are many equivalent definitions of weak
convergence. Here we list some of them:

e E(f(X,)) = E(f(X)) for all bounded Lipschitz f
E(f(X,))—E(f(X)) for all bounded f such that IP(X € {discontinuity points of f})=0
limsupE(f(X)) < E(f(z)) for all upper-semicontinuous f that is bounded from above

n—oo

liminf E(f(X)) > E(f(z)) for all lower-semicontinuous f that is bounded from below
n—oo

limsupP(X,, € K) < P(X € K) for every closed K C R

n—oo

Theorem 5.11. Equivalent Definitions Of Weak Convergence: A sequence of random
variables X,, converges weakly to X if and only if E(f(X,)) — E(f(X)) for all bounded and
continuous f: R — R.

Proof. Assume X, % X, ie. that lim Fy, (t) = Fx(t) for all t where Fy is continuous.
n—oo

Take Y,, and Y as from Skorohod’s Theorem (Theorem 5.10, Page 44). Then for all bounded
and continuous f : R — R, f(V;) &% f(Y) since ¥, =3 Y and f is continuous. Then by
the Bounded Convergence Theorem (Theorem 5.5, Page 42) E(f(Y,)) — E(f(Y)), and by
the equality in distribution portion of Skorohod’s Theorem, E(f(X,)) — E(f(X)).

Now assume E(f(X,)) — E(f(X)) for all bounded and continuous f : R — R. We want
to show that if ¢ is a continuity point, then [P(X, < t) = E(L{x,<y)] = [P(X <t) = E(1{x<y)]
(these are the definition of CDF’s). The issue is that the indicator function isn’t continuous.
So we aim to approximate the indicator with a sequence of continuous functions.

1, r<t
Given ¢ > 0, define f.(v) = ¢ #==£, t <z <t+4e. As e goes to zero, the slope of
0, t+e<z

f- between ¢ and t + ¢ grows vertical; f.(z) goes to I{y<;3. Then since lix, <y < fo(x),

we have limsupE(L{y,<4) < lim E(f.(X,)) and since f. is bounded and continuous,
n—00 B n—00

JLHSOE(JCE(X"» = E(f.(X)). Taking ¢ to zero, we have liin_)s;}pE(ll{xngt}) < ll_I)I(l)E(fs(X)) =
E(1{z<s) by the Dominated Converge Theorem (Theorem 5.8, Page 43).

1, r<t—c¢
For the other direction, define g.(z) = t_TI, t —e < x < t. For the same rationale, as
0, t<ux
€ goes to zero, g.(x) goes to Li<s. And by the same argument for the first inequality, since
g:(x) < liz<yy, lim infE(l{xngt}) > lim E(ga(xn)) = E(ga(x)) Then taking e to 0, again
n—oo n—oo
by the Dominated Convergence Theorem, lig %)Iolf E(]l{:pngt}) > E(]l{Kt}). Then since t is a

continuity point of Fy, P(X < t) = P(X < t) and E(L{y<y) = E(L{z<sy). In light of the
two inequalities above, we reach our conclusion, that P(X, <t) —» P(X <t). |
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Theorem 5.12. Helly’s Selection Theorem (“No free lunch theorem”): Let {F,,}
be a sequence of distribution functions. Then there exists a subsequence { F},, }, , and a right-
continuous, non-decreasing F' : R — R such that F), (t) — F(t) for all continuity points ¢ of
F. If the subsequence is tight, then F' is a valid CDF (so the subsequence converges weakly).

Proof. Consider any t € R. Since F,(t) € [0, 1] for all n, there exists a convergent subsequence
F,,.(t) as k — oo. The issue is that this subsequence depends on ¢, but we want to use the
same subsequence for all £. So we try the diagonalization trick. Enumerate the rationals. By

the above, there exists a {n,(:)} such that Fn(l)(q1) as k — 0o. Now proceed inductively;
k

k=1
given (n,(gl))zozl, choose a subsequence (n,(jﬂ))zo:l such that Fn(iﬂ)(ql +1) as k — oo. Finally,

set dy, = n,(gk), ie. ngl), ng), né?’), etc. Then Fy, (q) converges as k — oo for all [ since (d)x>;

is a subsequence (n,(f))zozl. Now set F(q) = klim Fy, (q) for all ¢ € Q. This defines a non-
—00

decreasing F:Q— [0, 1] since Fy, is non-decreasing for all k. To get the function defined
on all of R, use F(t) = inf {F(q) qeQ,q> t}. So F' remains non-decreasing.

Then when s < ¢, {€Q:q¢>s} D {ge€Q:q>t} and thus F(s) < F(t). F is also
right-continuous. Given ¢ > 0, choose rational ¢ > ¢ such that F(q) < F(t) +e. Then
for all ¢ € (t,q) we have F(t) < F(t') < F(q) < F(t) +&. Then we conclude that F(t')
monotonically decreases to F'(t) as t’ goes to t.

Finally, we need to show that F), (¢) — F(t) if t is a continuity point. Let € > 0 be given
and use continuity to find 6 > 0 such that |s —¢| < ¢ (and thus |F(s) — F(t)| < ¢). Then
choose rationals ¢/, ¢” such that t —§ < ¢ <t < ¢’ and ﬁ(q”) < F(t) + . Now we have
F(t)—e < F(t—06) < F(¢) < F(¢") < F(t)+¢ by the definition of F(t—4). Since Fy, (q) —

F(q) for all ¢ € Q, it follows that limsup Fy, (t) < limsup F, (¢") = F(q") < F(t) + ¢ while
k—o0 k—o0
lilgn inf F, () > limsup Fy, (¢) = F(¢') > F(t) —e. Then as ¢ goes to 0, we conclude that
0 k—o0

Fy,(t) = F(t) as k — oc.

For part 2, assuming tightness, we can find a,b € R such that F,(a) < e and F,(b) > 1—¢
for all n € N. Then selecting continuity points s,t of F' such that s < a < b < t, we have
F(s) = lim F,(s) < ligninf F,.(a) < e and F(t) = lim F,(t) > limsup F,,, (b)) < 1 —&.

n—oo — 00 n—oo k—oco

As ¢ was arbitrary, we conclude that lim F(s) = 0 and tlim F(t) = 1. So F is a valid
§—00 00

distribution. [ |
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5.3 Problems
Problem 5.1) Suppose that {X,} >, X, and {Y,} ., are random variables de-

n=1’
fined on the same probability space. Assume X, 4 X and Y. 4 ¢ where c is a
constant. Prove that X,, + Y, 4 x + c.

Let ¢ > 0 be given. The distribution function of a constant takes a value of 1 once the
constant is reached, and 0 prior to the constant being reached. So by assumption of the proof,

1 >
lim Fy,=F, =< *= ¢ and thus lim P [V, <(c—¢)=0and lim P[Y, < (c+¢)] =1.
n—00 0, z<c n—00 n—00
Equivalently, lim P[Y, > (c—¢)] = 1.
n—oo

Intersection with a probability one event is just the original probability, so for any ¢ € R,
we have limsup P[(X,, +Y,) < (t+¢)] = limsupP[{X, + Y, <t+c}N{Y, > (c—e)}].
n—o0

n—oo

Note that if (X, +Y,) < (t+¢) and if (V},) > (¢ —€), then (X, + ¢ —¢) < (t + ¢) and so
X, <t+e. Taken together, limsup P[(X, +Y,) < (t+¢)] <limsupP [X, < (t+¢)].

n—oo n—o0

We know (—o0,t + ¢] is closed, so by the Portmanteau Lemma (Lemma 5.10.1, Page 45),
limsup P(X,, <t+¢) <P(X <t+e). When combined with the previous inequality, we see:

n—oo

limsup P[(X, +Y,) < (t+¢)] <limsupP[X, < (t+¢)] <P(X <t+e)

n—o0 n—oo

Using the same reasoning as outlined above, we also have:

liminf P[(X, +Y,) < (t+¢)] > liminf P[X, < (t —¢)] > P(X <t —e¢)

n—00 n—o0
When ¢ is a continuity point of F'y and we take ¢ to 0, we squeeze the lim sup/inf like so:
P(X <t)=P(X <t—¢) <liminf P[(X, +Y,) < (t+0)]
n—oo
<limsupP[(X, +Y,) < (t+¢)] <P(X <t+e)=P(X <t)

n—oo

Since the limit superior and limit inferior agree, we can write:

lim P[(X, +Y,) <(t+¢)] =P(X <t)=P(X+c<t+c)

n—o0

As t + ¢ is a continuity point of Fx,.(z) if and only if ¢ is a continuity point of Fx(z),
this proves our result.

47



5.3 Problems Flaherty, 48

Problem 5.2) Assume {X,} - is a weakly convergent sequence of random vari-
ables. Show that this sequence is tight.

A sequence of random variables are tight if for all € > 0, there exist a,b € R such that
Fi(a) < e and F;(b) > 1 — € where F; are distribution functions.

So let € > 0 be given and choose continuity points a* and b* such that F'(a*) < § and
F(b*) > (1 — 5). By assumption, F},(a*) — F(a*) and F,(b*) — F(b*). Then by definition,
there exists an N € N such that for all n > N, F,,(a*) < e and F,(b*) > (1 — ¢).

For any n < N, we can choose values a,, b, such that F,(a,) < e and F,(b,) > (1 —¢).
Call a = min{ay,...,ayn,a*} and b = min {by,...,by,b*}. Then for alln > 1, F,(a) < ¢ and
Fu(b) > (1—¢).

Problem 5.3) Let (2, F,IP) be a probability space such that P(A) € {0,1} for
every A € F. Prove that every random variable on this space is an almost sure
constant. That is, show that for any measurable function X :  — R, there
exists a a € R such that P(X =a) = 1.

Consider the set (—oo,k) in the Borel sigma-algebra of R. Since X is measurable,
X((—o0,k)) € F. By assumption of proof, we can say

P(X’l((—oo,k))) —P({weQ: X(w) <k}) =P(X <k) = Fx(k) € {0,1}

where F'yx is understand to mean the cumulative distribution function of X. Since

lim Fx(n) = 0, lim Fx(n) = 1, and F, is monotone, there exists values a,b € R such
n——oo n—oo

that a =sup{z € R: Fx(z) =0} and b = inf {x € R: Fx(x) = 1}.

If a < b, then there would exist a ¢ € R such that a < ¢ < b. Then by the construction
of a and b and by the monotonicity of Fy, 0 = F,(a) < Fx(c) < Fx(b) = 1, a contradiction
to Fx € {0,1}. So a =b.

Now let € > 0 be given. We have:

P((a—¢) <X < (a+¢)) Would like this to be 1
=P(X <(a+¢)) —P(X <(a—¢)) Breaking up inequality
=Fx(b+¢)— Fx(a—¢) Definition of CDF and a = b

=1-0=1 How @ and b were constructed

Since this holds for all € > 0, we must have P(X = a) = 1 as desired.
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Problem 5.4) Show that if X7, X5,... are non-negative, IE( > Xi): > E(X;).

For all finite n, E(X; + X; +--- + X,,) = E(X3) + E(X3) + - - - + E(X,,) by linearity of
expectations. Define a sequence of random variables by V) = X1, Yo = Y1+ Xo, Y3 = Yo+ X35,

etc. Then ]P( lim Y, = > Xi) = 1. Since each X; is non-negative, Y; <Y, for every i; the

sequence is monotone increasing. So we have a non-negative sequence of random variables
that converges almost surely and we can use the monotone convergence theorem (Theorem

5.7, Page 43) to say hm E( n) = (Z X) This proves the claim.

Problem 5.5) Let X be a nonnegative random variable. Show that there is a
sequence of nonnegative simple random variables {X,,}, -, such that X,, ~ X
as n — oo. B

Consider the sequence of random variables given by X,,(w) = min {5 [2" - X (w)],n}.

For every n in the sequence and any w € €2, X, (w) = 0 when 2" - X (w) < 1. Similarly,
whenever X (w) > n, X,(w) = n. Since each X,, is non-negative, the sequence is bounded
by these values, 0 < X,, < n. Then by inspection, the ﬂoor function can take on values
0,1,...,n-2" to stay within the bounds. In other words, X, (w) € {0, 5 s 2n, e ,n}; each
random variable in the sequence is simple since it can only take on finitely many values.

Consider a random variable in this sequence X and an element w € ). Observe that
212" X(w)| < 12-2" X(w)]| = [2"" X (w)] (the inequality is only an equality when X (w) is
an integer). Then dividing both sides of the inequality by 2", we see LQ";(M)J < L2n;ﬁ(w” .
Since the right-most part of the minimum is n < n+ 1, this proves the sequence is monotone

increasing.

We prove the sequence of random variables converges to X with the squeeze theorem. At
any n, [X,(w) =min{z[2" - X(w)],n}] < min {[ -2"- X(w IE n} < min{X(w),n}. On
the other hand [X,,(w) = min {5-[2" - X(w)|,n}] > min {X — o,n}. Then taking both

limits we see nh_)rglo min {X (w),n} = X(w) = nh_}rgoX( w) — g7 = hm min { X (w) — 5x,n}.

Problem 5.6) Assume X,, P, X and that there is an integrable random variable
Y where X,, <Y for each n. Show that lim E(X,) = E(X).
n—oo

Let {ng},—, be a sequence of positive integers. Since X, L X, we must have X, X
as Well Then by the properties of convergence in probability, there is a further subsequence
Xnk, —> X. Since each Xnk is bounded by Y, by the Bounded Convergence Theorem
(Theorem 5.5, Page 42), 11m ]E(X ;) = E(X). Then because every subsequence has a

further convergent subsequence the full sequence converges.
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Problem 5.7) Let {X,,}, -, be a sequence of random variables such that X,, X
almost surely and E(X; ) < oco. Prove that E(X,,) " E(X).

Consider the sequence of random variables given by Y,, = X,, + X . By the monotonicity
of the X;’s, [Yn =X, + Xﬂ < [Ynﬂ = X1 + Xﬂ; {Yy},.en 1s monotone increasing.

Again by the monotonicity of the X;’s, [V, = X,, + X7 | > X1+ X; = X{" > 0; {V,,}
is non-negative.

neN

Since X,, ' X almost surely, [Yn =X, + Xf] Ve [X + Xﬂ almost surely. So {Y,.}, oy is
a monotonically increasing non-negative sequence that converges almost surely. We can then
apply the monotone convergence theorem and linearity of expectations to reach our result.

]P(nll_>nolo E(Y,) =EX +X[)) =1 Monotone Convergence Theorem
P(JEEOE(X" +X)=EX+X;)) =1 How Y,, was defined

]P(nhﬁrgO E(X,) +E(X;)=E(X)+E(X;)) =1 Linearity of expectations since E(X; ) < oo
IP(JLIEO E(X,) =E(X)) =1 Desired result

Problem 5.8) Let X be an integrable random variable on the measurable space
(2, F). Show that for any € > 0, there exists a § > 0 such that the following
implication is true: A € F,P(A) <J — E(|X|14) {e.

Let € > 0 be given. First note that for any w € 2 and any n € N, the random variable
L, | X(w)]>n
0, |X(w)l<n
| X|1fxj>ny < |X| and |X] is integrable by the assumption of the proof, we can use the

Dominated Convergence Theorem (Theorem 5.8, Page 43) to show E(|X|1{x|>n}) goes to
zero in the limit (and in particular that we can choose an n such that E(|X|L{xjsn}) < £).

L x(w)>n} (W) = goes to zero almost surely as n grows large. Further since

With € > 0 and n € N in mind, consider § = 5—. Then observe
E(|X[14) = E(IX|Lianixizny + X Lianx|>n})
= E(|X|1{AQ|X‘<H}) + E(|X|IL{AQ‘X|>n}) Linearity of expectations
< E(nla) + E(|X|Lianx|>n}) |X| < n if indicator isn’t zero
=nP(A) + E(|X|Lian x>n}) Expectation of indicator is probability of event
=nd + g By assumption and how we chose n
=n- < + ° Desired result
2n 2
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6 Independence

6.1 Definition

Definition 6.1. Sigma-Algebra Generated By Random Variables: The sigma-algebra
generated by a sequence of random variables { X}, ; is the smallest sigma-algebra containing
o(X;) for all i; o ({X;},c;) = o (U o(X;)). Here, 0(X) = {{w € Q: X(w) € B} : B € B(R)}.
i€l
Example 6.1: Consider a sample space whose sets indicate the outcome of three fair coin
flips (e.g. Agrr denotes a head followed by two tails). Further consider the random variable
Sa(w) which returns the number of heads that come up after the first two flips. It is an easy
exercise to find the pre-images that belong to each borel set. For example, {S; € {2}} =
{AHHH7AHHT} = AHH and {52 € [1, 2]} = {AHH U AHT U ATH} = A’(Z:“T

0,9 Apn, Arr, Aur U Ara,
AS s ASpy A U Arr
0,Q, Ay, Ar,
Agn, Aar, Aru, Arr,
A%Hv AJ(LJITa A%H? A%Ta
Apg U Arr, Agn U Arg, Agr U Arp, Agr U Arg
For example, Ayr € F3 but Agr ¢ o(S2). This is because only knowing the value of Sy
(e.g. that Sy(w) = 1) does not allow one to distinguish if the initial flip was a head or tail
(just that there was one total head in the first two flips). Since F; has enough information
to determine the value of Sy, we say that Sy is Fa-measurable (Definition 2.1, Page 12).

In total, o(S;) = { }, which is a substantially different

sigma-algebra than Fy =

Definition 6.2. Tail o-Algebra: Where {X;},.; is a sequence of random variables, the
tail sigma algebra is denoted T = [ o(X,41, Xpni2, ... ). The idea is that the Tail o-algebra

n=1
is the collection of events whose occurrence is unaffected when finitely many of the random

variables are changed.

Example 6.2: The set A = {lim X; Exists} is in the tail sigma-algebra. Intuitively, this is
because removing any finite ;morflber of elements does not change the limit. More formally,
we recall from real analysis that a limit exists if and only if it is Cauchy. The definition
of Cauchy convergence is that for any ¢ > 0, there exists a N € N such that whenever
i,j > N, it must be the case that |X; — X,| < . Since this holds for all ¢ > 0, we can
pick a particular element k£ > 1, and get the result that |X; — X;| < % Using the usual

method of converting qualifiers to unions (there exists) and intersections (for all), A can be
expressedas (| U N N {|X: - X;| <1}

k>1 N>1i>N j>N

Non-example 6.1: The set C' = {sup X; > 5} is not in the tail sigma-algebra. For example,
i>1
the first random variable could be doing all the lifting (e.g. is a constant 6), and removing
it would change the supremum of the sequence (if all the other random variables, were, e.g.

a constant 4).
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Definition 6.3. Independence (Of Events): A finite set of events Ay, Ay, ..., A, is mu-

tually independent if for all 7 C {1,...,n} we have P((,.; A;)) = [[P(4;). We say
iel

Ay, Ay, ..., A, are pairwise independent if for all i # j, P(A4; N A;) = P(A;)P(A;). Note

that mutual independence implies pairwise independence, but not vise-versa. Infinite collec-

tion of events are independent when any finite subset of the events are independent.

Ezample 6.3: Take Q = {1,2,3,4}, F = 2% and P(A4) = |A|. Then consider events
A ={1,4}, B ={2,4}, and C = {3,4}. These are pairwise independent but not mutually
independent since P(AN B) = P({4}) = 1 = 1.1 = P(A) - P(B) (the same results hold
for the other two intersections), but P(ANBNC) = P({4}) =1 # t =1-3-3 =

P(A) - P(B) - P(C).

Non-ezample 6.2: Independence isn’t transitive. Take Q = {1,2,...,20}, F = 2% and
P(A) = |A|. Then consider events A = {1,2,...,10}, B = {1,3,12,13}, and C =
{3,4,...,12}. Wesee ANBNC ={3},s0 P(ANBNC) = % =323
We also see AN B = {1,3} and BN C = {3,12}, so P(AN B) = 15 : =P(A)P(B)
and likewise P(BNC) = & = -1 = P(B)P(C). But AnC = {3,4,...,10} so

P(ANC) =2+ 1.1 =PAP(C).

Definition 6.4. Independence (Of Sigma Algebras): A finite collection of sigma-
algebras {F;},., is independent if for every A; € F;, {A;},; is independent. Note that
this specifically is not saying anything about events within any one sigma-algebra (i.e the
events within a sigma-algebra may not be independent, see example), but rather is saying
that selecting one event from each sigma-algebra results in independence.

Ezample 6.4: Take (Q,F,P) where Q = {1,2,3,4}, F = 2% and P(A) = |A|. Consider
the sigma-algebras F; = {0,Q, {1,2},{3,4}} and 7 = {0,9Q,{1,3},{2,4}}. We see that
the two sigma-algebras are independent (and may write JF; LF3) since the two non-trivial
sets in JF; share precisely one element with the two non-trivial sets in F,. For example,
P({1,2} n{1,3}) = P({1}) = ; = 5 5 = P({1,2}) - P({1,3}) and P({1,2} N {2,4}) =
P{2}) =3 =35-3=P({L2}) -P({2,4}).

Non-example 6.3: Take (Q, F,P) where Q = {1,2,3,4}, F = 2 and P(A) = |A|. Consider
the sigma-algebras F; = {0,9,{1,2},{3,4}} and F = {0,9Q,{1,2,3},{4}}. These two
sigma-algebras aren’t independent. For example, P({1,2} N {1,2,3}) = P({1,2}) = ; #
% ) 4§1 = P({l’ 2}> ’ ]P<{17 27 3})

Definition 6.5. Independence (Of Random Variables): A finite collection of random
variables {X;}, ; is independent if {o(X;)},.; (Definition 2.4, Page 13) is independent. For
two random variables, this is equivalent to checking that P(X < t,Y <t5) = Fx(t1)Fy(t2).

Non-example 6.4: If S5 denotes the number of heads in the first 2 tosses of a fair coin and Sy
denotes the number of heads in the first flip of a fair coin, then S5 and S; aren’t independent.
Informally, knowing the value of S; influences the knowledge of Sy (for example, if S; = 0,
Sy # 2). More formally take Ay € o(S;) and Ayy € 0(S2). Then P(Ay N Apy) =
P(Apn) = % # % = % : % =P(An) - P(Aun).
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6.2 Theorems And Examples

Theorem 6.1. Information Is Lost Through Composition: Where f : R — R is a
measurable function, X is a random variable, and o(X) is the sigma-algebra generated by
the random variable, o(f(X)) € o(X). In particular, if X and Y are independent, then
f(X) and f(Y) are independent.

Proof. Take any S € o(f(X)). Then by definition, there exists a B € B(R) such that
S = (foX)(B)=X"f"YB)). Since f is measurable by assumption, f~'(B) € B(R)
(the sigma-algebra associated with the domain of f). So, there is a D € B(R) (namely
f7Y(B)) such that S = X~}(D); S € o(X). |

Theorem 6.2. Equivalent Definitions of Independent Random Variables: If X
and Y are independent random variables whose expectations are defined, then E(XY) =
E(X)E(Y). This result extends to multiple independent random variables, but the converse
is not true (see Example 3.2, Page 21). Additionally, we must have the joint distribution,
joint MGF, and joint density factor as well.

Proof. First, we assume X and Y are simple, i.e. X(w) € {z1,...,z,}and Y (w) € {y1, ..., Ym}-
Define the events A; = X '({z;}) and B; = Y '({y;}) forall 1 <i <mnand 1< j < m.

Then clearly X (w) = > #;144,)(w) and Y(w) = > y;1¢p,3(w). We then have:
i=1 j=1

E(XY)=E ((Z xﬂ{m}) <Z yﬂ{&-}))

i=1 j=1

- Z Z vy E (Teanlin,) Linearity

i=1 j—l

- Z szyj IL{A } (]]'{Bi}) A L Bj

11]1

—Zx]E ]l{A} Zy] IL{B} Grouping
= ]E(X)]E(Y)

The third step follows since X and Y are independent, and so every A; and B; are as
well. It is easy to see that indicator functions of independent events are independent, since
E(1iayls)) = E (Lians,y) = P(A; N B)) = P(A)P(B;) = E(L{a))E(L(5,))-

Next, we assume X and Y are non-negative. Consider the function f,(¢) = min {21n |2"¢], n}
and call X,, = f,(X) and Y,, = f,(Y). Since f, is measurable, o(X,,) = o(f.(X)) C o(X)
and o(Y,) = o(fn(Y)) C o(Y) (Theorem 6.1, Page 53). Due to the independence of X and
Y, this means that X,, and Y,, are independent for every n.
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Since X,, and Y,, are simple random variables (they can only take on n2™ different val-
ues due to the bound of n and the discretization of size 2%) that are independent, we can
use the above argument to see E(X,Y,) = E(X,)E(Y,). Further, since X,, and Y,, are
increasingly better approximations of X and Y (the floor function ensures that for every
w, X(w) is no more than 5 larger than X,(w)), 0 < X, /' X and 0 <Y, /'Y (as n
grows large, the difference X (w) — X,,(w) < 5% becomes arbitrarily small). So 0 < X,,Y,,
XY, and applying the Monotone Convergence Theorem (Theorem 5.7, Page 43), we have
JLIEO E(X,Y,) = E(XY). Applying the same theorem to X, and Y, individually, we have
lim E(X,Y,) = lim E(X,)E(Y,) = lim E(X,) lim E(Y,) = E(X)E(Y).

n—oo n—oo n—oo n—o0

Finally, we assume X and Y are integrable. Each of X+ = min {X,0}, X~ = min {—X, 0},
and Y* is non-negative and a function of X and Y; we can again apply Theorem 6.1 to say
every combination of X¥ is independent of every combination of Y*. Then observe:

EXY)=E((Xt-X")(Y"-Y")) Definition
=K (X*YJr - XY XY+ X*Y*) Grouping
=E(X'YY) -EX'Y ) -E(X YN +E(XY") Linearity
=E(X")E{Y')-EX")E(Y )-E(X )E(Y")+E(X )E(Y") Independence
=EX") [EY")—E(Y )] -EX")[EY") - EY )] Grouping
= [E(XT) —E(X)] [E(Y") — E(Y™)] = E(X)E(Y) Grouping

|
Lemma 6.2.1. Let {X;},.,
P = {ﬂ A A€ O'(XZ')}. Then P is a pi-system.

iel

be a collection of independent random variables and define

Proof. It A,B € P, then ANB = (ﬂ Ai) N (ﬂ Bi) = N(4;NBy). [

i€l i€l i€l

Lemma 6.2.2. Let {X;},.; be a collection of independent random variables and define

P = {ﬂ A A€ O'(Xi)}. Then o(P) =0 ({Xi},o;), call it G.
iel

Proof. Consider any A € P. By definition, A = (| A; where each A; € o(X;) (and thus

il

also an element of G). Since sigma-algebras are closed under intersection, we have A € G

and thus P C G. Since o(P) is the smallest sigma-algebra containing P, and since G is a

sigma-algebra, we therefore have o(P) C G. Now consider any fixed i € I. If B € o(X;),

then B € P C o(P) (to see this, just take A; = Q for every j # i in the intersection;

(A, =BnN () Aj). Since this holds for every ¢ € I and since sigma-algebras are closed

iel jAijel

under unions, we have |J o(X;) C o(P). Since G = ¢ (U O(Xi)> is the smallest sigma-

il icl
algebra containing | J o(X;), and since o(P) is a sigma-algebra, we have G C ¢(P) and have
i€l

proved o(P) = G. [
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Lemma 6.2.3. Let (2, F,P) be a probability space. Suppose P;,...,P, C F are m-systems
such that for any A; € Py,..., A, € P,, the collection {A;}.°, is independent. Prove that
o(Py),...,0(P,) are independent.

Proof. Fixany Ay € P, ..., A, € P,. Define L ={B € F : {B, As,..., A,} is independent}.
If we can show L is a lambda-system, then since P; is a pi-system contained in £ by as-
sumption, o(P;) C L by the Pi-Lambda Theorem (Theorem 3.6, Page 27). Then we would
have A;, Ao, ..., A, are independent for any A; € o(P;). Since o(P;) is a pi-system, we can
repeat this argument replacing P, with o(P2), Ps with o(Ps), etc. So all we need to do is
show that £ is a lambda-system.

Let Be€ Land I C {2,...,n} be given. To show L is closed under compliment, we need
to show that P(BC NN Ai) = P(B°)[L,c; P(Ai). Note that we check I for any subset of

i€l
{2,...,n} instead of just the entirety of {2,...,n} because we need to show it is mutually
independent. Then observe:

]P(BC N ﬂAl> = ]P(ﬂ AZ-> — ]P(B N ﬂ Ai> Everything in N;c4 not in B

iel el el

= H P(A;) — P(B) H P(A;) By assumption

iel iel
= (1-P(B)) H P(A;) Grouping terms
iel
=P(B°) H P(A;) Desired result
iel
To show L is closed under countable disjoint union, let By, By, ... be disjoint events in £

and call B = 4,2, B;. Then observe that:

]P(B N ﬂA,-) _p (@ BN ﬂAZ) How B is defined

i€l el
=P | (B;:n[)A4:)| If By, B, disjoint, then AN By and AN B, disjoint
i=1 el

= Z P (Bi N ﬂ Ai> Properties of disjoint union
i=1

i€l
= Z P(B;) H P(4;) Independence assumption
i=1 iel
=P <L—|j Bi> H P(A;) Properties of disjoint union
i=1 il

— P(B) [[ P(A)

el
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Lemma 6.2.4. Let {X;},_, be a collection of independent random variables. Let I; and I,
be two disjoint subsets of I. Then o ({X;},;,) = G1 is independent of o ({X;},.,.) = Ga.

Proof. In the spirit of Lemma 6.2.1 and Lemma 6.2.2, we can define P; = { N Ai: A€ O'(XZ')}

i€ly

and Py = { N Ai: A € U(Xi)}. By Lemma 6.2.1, P; and P, are pi-systems. By Lemma
i€l

6.2.2, o(P;) = Gy and 0(P,) = Gy. Then applying Lemma 6.2.3, o(P;) = G, is independent

of O'(PQ) = gg. |

Theorem 6.3. Kolmogorov’s 0-1 Law: Let {X;}~, be independent random variables
and 7T the associated tail algebra. Then for all A € T, either P(A) =0 or P(A) = 1.

Proof. Since the X;’s are independent, by Lemma 6.2.4 we have o (X7, ..., X,,) independent
of 0 (Xy41,...) for any n € N. By the definition of tail-algebra, T € o (X,41,...) and so

o (Xi,...,X,) is independent of T. Since this holds for all n, we have |J o (Xi,...,X,)

n=1
independent of 7. But again by the definition of tail-algebra, 7 € |J o (Xy,...,X,). So

n=1
T is independent of itself. In particular, any event A € T is independent of itself. That is,
P(A)=P(ANA) =P(A)P(A) and so P(A) € {0,1}. |
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6.3 Problems

Problem 6.1) Let (€2, F,IP) be a probability space and consider events A, B € F.
Show that A and B are independent if and only if 14 and 1p are independent
random variables.

Recall that random variables are independent if and only if the sigma-algebra generated by
the random variables are independent. Here o(14) = {1;'(B): B € B(R)} = {0, A, A°,Q}
(this was shown on another homework). Similarly, o(1g) = {0, B, B¢,Q}. For the sigma-
algebras to be independent, we need each event in one sigma-algebra, call the event A;, to
be independent from each event in the other sigma-algebra, call the event B;; P(A4; N B;) =
P(4,)P(B;).

Assume A and B are independent, i.e. P(ANB) = P(A)P(B). Then proceed one-by-one
through the cases.
o If A; =0, then P(DN B;) =P(0) =0=0-P(B;) = P())P(B;) for all B; € B

o If A, = A, then there we can assume B; = B¢ (the reverse argument for the points
above give cases where B; = () and where B; = 2, and we have assumed the case where
B; = B in the proof). Then P(AN B°) = P(B) —P(ANB) =P(B) - P(A)P(B) =
P(B)(1 —P(A)) = P(B)P(A°)

o if A; = A° then we can assume B; = B¢ and use the same argument as above.

On the other hand, if the sigma-algebras are independent, then a choice of A € a(1,4)
and a choice of B € o(1p) shows us that A and B are independent. This proves our result.
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Problem 6.2) Show that covariance is bilinear, i.e. for any random variables

X15...,X, and Y3,...,Y,, and any constants ai,...,a, and (,...,83, € R,
that Cov( Yo X, > ,Bij) = > > a;8;Cov(X;,Y;), provided X;, Y;, and X,Y;
=1 j=1 1=1j=1

are integrable for each 1y 7.

The covariance of random variables X and Y is Cov(X,Y) =E [(X — E(X)) (Y —E(Y))] =
E(XY)—E(X)E(Y). So by linearity of expectations, we see:

R | )

_E (Zale ZalE(Xl)> (Z@YJ — Z@E(Yﬂ))
=B | oi(X0 — E(X0) Y 8 (Y; ~ E())
—F Z Z a;f; (Xi — E(X3)) (Y; — E(Y;))

= Z Z O{iﬁjCOV<XZ‘, }/j)

i=1 j=1

n

Problem 6.3) Show that if X;. ..., X, are uncorrelated, then V( > X;) = > V(Xj)
i=1 i=1
provided E(X?) < oo for each i.

V( Z X,-) = Cov ( Z X;, Z Xj) Definition of Variance
i=1 i=1 j=1

= Z Z Cov(X;, X;) From Problem 6.2

i=1 j=1

= Z Cov(X;, X;) Ignore cases where i # j since Cov(X;, X;) =0
i=1

= Z V(X;) Desired result
i=1
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7 Law Of Large Numbers

7.1 Definitions

Definition 7.1. Identically Distributed: Two random variables X and Y are identically
distributed if P(X € B) = P(Y € B) for all B € B(R). Equivalently, we can check if P(X; <
t) = P(X; <t)forall t € R (equivalent by taking B = (—o00,t]). Another equivalence is
E(f(X;)) = E(f(X1)) for all measurable f and all ¢ > 1 provided the expectations exist
(equivalent by using the push-forward formula in the above).

Ezample 7.1: Consider random variables X ~ Bern(0.5) and Y = 1 — X. Then X and
Y are identically distributed (they are both fair coin flips, with “heads” counted as 1 and
“tails” as 0), but not independent (X literally causes Y; XY is always 0, so E(XY) =0 #
E(X)E(Y) = 35 = 1)-

22 4

Non-example 7.1: Consider random variables X and Y where X models a coin flip and Y
models a dice role. Then X and Y are independent (XY has 12 possible outcomes, 6 of

6
which are 0, so E(XY) = 13 21 n =2 =E(X)E(Y) = 32), but not identically distributed
(for example, X does not even take the value 2).

Example 7.2: Consider random variables X and Y which are two independent copies of a
normal random variable. Then X and Y are both independent and identically distributed.
When random variables are both independent and identically distributed, we may abbreviate
them as iid.

Definition 7.2. Infinitely Often: If (Q2, 7, P) is a probability space and if {A;};°, is a se-

quence of events in F, then A; occurs infinitely often if P [ () |J A; ] = 1. Identifying inter-
n=1i>n
section with “for all” and union with “there exists”, this is saying “for all n € N, there exists
an ¢ > n such that A; occurs with probability 17, which is precisely the definition of lim sup;
P <ﬂ U Ai> =1 << P (limsup Ai) =P ({w e Q:w e A for infinitely many i}) = 1.
n=1i>n i—00

We will often abbreviate this to P (4; i.0.) = 1.
Definition 7.3. Eventually Always: If (2, F,P) is a probability space and if {A4,}.°, is a

sequence of events in F, then eventually, A; will always occur if P (J N Ai) = 1. Identi-
n=1i>n
fying union with “there exists” and intersection with “for all”, this is saying “there exists an
n € N such that for all ¢« > n, A; occurs with probability 1”7, which is the definition of lim inf;
P (U N Ai> =1 < P (hminf) =P ({we Q:we A for all large enough i}) = 1.
n=1i>n =0

While not universal notation, we may abbreviate this to P (4; e.a.) = 1.
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7.2 Theorems And Examples

Theorem 7.1. Borel-Cantelli: If {A,}.°, is a sequence of events that satisfy ) P(A;)<oo,
i=1
then P(A; i.0.) = 0; i.e. only finitely many of the A;’s occur.
As a partial converse, if {B;};-, is a sequence of independent events (independence is not
needed in the first part of the theorem), such that »_ P(B;) = oo, then P(B; i.0.) = 1.

i=1

Proof. For the first part of Borel-Cantelli, label A!, = (J A; for every n. As n increases,

>n
events are removed from the union; A, 2 A7 ., D A/ ., O ---. Then by continuity from above
(Theorem 1.1, Page 7), P <ﬂ U A> (ﬂ A;) = lim P(A)) = lim P (U Ai). For
n=1i>n n=1 n—00 n—00 i>n

any fixed n in the limit, we can use the union bound (Theorem 1.1, Page 7) to show that the

probability is no more than »_ P(A4;); P (ﬁ U Ai) = lim P (U Ai) = hm ST IP(A;).

i>n n=1i>n i>n z>n
Since the infinite sum is less than infinity by assumption, so too is the tail, and we’ve proved
our result.

For the second part of Borel-Cantelli, we want to show P(B; i.0.) = 1 or equivalently
P (B; i.0.°) = 0. See that:

P ( m U B; ) ( U ﬂ Bf > DeMorgan’s Laws
n=11i>n n=11i>n
=P (U B;) After calling B), = m Bf,so B, C B, C
n=1 i>n
< Z]P(B;l) Union bound (Theorem 1.1, Page 7)
n=1
It suffices to show P(B],) = 0 for all n. See that
P(B,) = lim P(( ) By) Continuity from above (Theorem 1.1, Page 7)
n—oo
>n
= H (1 - P BZ)) By independence and compliment rules
>n
< H e F(Bi) Using the inequality in Lemma 4.1, Page 34
>n
- ¥ P(B) L .
=e i=n Product of exponentials is exponential of sums
=e =0 By assumption of the proof
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Example 7.3: If you flip a one-sided die followed by flipping a two-sided die, followed by
flipping a three-sided die, etc. then the probability that a one is rolled infinitely often is one.
This follows from Borel-Cantelli’s second theorem since on a uniform probability measure,

P(X,=1)=2% and } L =00
n=1

Non-example 7.2: If you roll a one-sided die, followed by flipping a four-sided die, followed
by flipping a nine-sided die, etc. then the probability that a one is rolled infinitely often is
zero (i.e. there is a last time a 1 is rolled). This follows from Borel-Cantelli’s first theorem

o

. . 1. 2

since on a uniform probability measure, P(X,, =1) = -5 and ) & = = < oo.
n=1

Proposition 7.1. L* Strong Law Of Large Numbers: The sample mean of independent
X; € L*(P) converges almost surely to the true mean. More precisely, if {X;};°, is a sequence

of i.i.d. random variables such that E(X}) < ¢ < oo, then (7 =15 Xn> 22 B(X).
i=1

Proof. Without loss of generality, assume E(X) = 0 (if not, replace X; with X; — E(X)).

n n 4 n ; n o n n
i = i=1 ] j =1

i=1 i,9,k,1

linearity of expectations, E(S}) = Y E(X,;X;X,X), a sum with n* terms.
ikl

Since the random variables are mutually independent, whenever i, j, k,[ are distinct,
E(X;X;X: X)) = E(X,)E(X;)E(X,)E(X;) = 0. Similarly, whenever i # j # k, terms in
the form E(X? X)) factor as E(X}?)E(X;) = E(X})-0 = 0 and terms in the form E(X?X;X})
factor as E(X?)E(X;)E(Xy) = 0. So only terms in the form E(X}) and E(X?X?) contribute
to the sum.

There are (7) = n terms in the form E(X}) and (3)(3) = 2‘,‘—;,% = 3n(n —1) terms in
the form E(X?X?). This follows since there are (%) ways to choose pairs (i, ) as our index
in E(X?X?), and, once the (i,7) pair is determined, there are (;) distinet permutations
(e.g., E(X; X, X;X;) = E(X;X;X,;X,)) since fixing the location of the i terms determines the
location of the j terms.

So our sum is E(S,) = nE(X}') + 3n(n — 1)E(X?X?) which, by assumption of the proof,
is no more than nc+ 3n(n — 1)E(XZ2X]2) Since E(Xfo) = E(|X22X]2]), by Cauchy-Schwartz
(Theorem 4.4.1, Page 34), E(X?X?) < E(|X?[?)2E(|X?]?)2 = \/E(XHE(X}) = V& = ¢,
and our bound becomes E(S%) < nc+ 3n(n — 1)c = (3n? — 2n)c < 3n’c.

Now let ¢ > 0 be given. Then P(22 > ¢) = P(S} > n'e?) < ES) _ 3nfe _ 31 by

niet niet

Markov’s Inequality (Theorem 4.1, Page 33) and the previously established bound. So we

have ) P (52 >¢) =3 % L = 3¢~ 0. By the second Borel-Cantelli Lemma (Theorem
n=1

n n? et 6

— n=1
7.1, Page 60), P (% > ¢ i.o.) = 0. Since this holds for all ¢ > 0, 57 2%, 0 and we have proven
our result. |
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Lemma 7.1.1. Conditions For Almost Sure Convergence: A sequence of random
variables X,, converges almost surely to X if P(|X,, — X| < ¢ for all large n) = 1 for all
e > 0.

Proof. By definition, X,, 2% X if for all ¢ > 0, there exists an N € N such that for all
n>N,P(X,-X|<e)=P ( U N X, —X| §5> = 1. Since this holds for all ¢ > 0,

N=1n=N

this must also hold for all 1 > 0. So X,, == X if P (ﬂ U N |X,—X| < %) = 1. Label

k=1 N=1n=N

the event |J (N |X, — X| < 1 as Ay. If P(Ag) =1 for all k, then P (ﬂ Ak) = 1. So to
N=1n=N k=1
prove almost sure convergence, it suffices to show P (| X,, — X| < ¢ for all large n) =1 N

Proposition 7.2. Law Of Large Numbers For Infinite Expectation: If {X;}* is
a sequence of i.i.d. random variables such that E(X;) = oo, then the probability that the
sample mean exists and is finite is 0.

Proof. We know that E(|X:]) = [[TP(|X1| > ¢)dt < [[P(| X1 > [t])dt = > P(|Xy] >
n=0

n) = > P(|X,| > n). Since E(|X,|) = 00, >_ P(|X,,| > n) = oo as well. Then by the second
n=0 n=0
Borel-Cantelli Lemma (Theorem 7.1, Page 60), P(|X,| > n i.0.) = ]P(% >1lio.)=1.

Label the event that lim XW exists and is finite A. We claim that Aﬂ{ Xel > 1 i.o.} =0.

If this claim is true, then since P({% >1 i.o.}) = 1, we must have P(A) = 0. So we focus

our aim on proving the claim.

n
_ Sn Sn-1| _ | Sn—1+Xn Sn-1| _ | Xn Sn— | Xnl  1Sn-1]
Call S” o Z;X” Observe n n—ll o ln o n—l1 n n(n—ll) = n _n(n—ll)
1=
by the reverse triangle inequality. If A occurs, then % — % — 0 as n grows large (by

Cauchy criteria for limits). On the other hand, if both A and {@ >1 i.o.} occur, then
lim sup p;—"l — % = lim sup @ > 1. But this violates the above inequality. |
n—oo n—oo
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Theorem 7.2. Strong Law Of Large Numbers: Let {X j};.’il be a sequence of iid random

a.s

variables such that —oco < E(X;) = < oo. Then ) % = u
j=1

Proof. First, we reduce to the non-negative case. Since X :X;r—X ; and X;r: max (X, 0)

+ + ... — — ... —
are iid, it suffices to show that M 2% B(X;) and 22 +X2n+ A 20 B(XT) as

doing so would imply XitXet-tXn 2R » E(X{) — E(X;) = E(X;). So henceforth we can
assume that X; > 0.

Second, we can truncate the random variables. Call Y; = X;lx.<;;. Then see that
Z P(X; > j) = Z P(X; > j) < [[7P(Xy > t) dt = E(X;) < oo by assumption of the

proof Then using Borel Cantelli (Theorem 7.1, Page 60), we have P(X,; > j 1io0.)=0. In
other words, P(X; < j) =1 for all large j and thus Y; = X; for all large j. So if we define
Sp,=X1+Xo+---+X,and T, =Y + Yo +---+ Y, then S,, — T, is finite with probability

1, and further lim sup }_Sn;Tn _
n—oo

Third, we can apply Chebyshev’s Inequality (Theorem 4.2, Page 33). For any £ > 0,
we have P(!%(T")\ > ¢) = P(|T,, — E(T,)| > ne) < zgﬁ;). We can further bound the

2
probability as ]P(\w] >e) < zg;;) < B 1{;2‘15"})

after observing:

ZV ) < Z E Y2 By independence and variance formula

= ZE(X;IL{X].SJ-}) < ZE(X;JL{Xan}) How Y; was defined and j < n
=1 j=1
= nE(X71{x,<n)) Since the Y;’s are identically distributed

Fourth, we can examine subsequences in the form n, = [a”] for some o > 1. By the
bound established above and the knowledge that %ak < np < aF, we have:

o E(X?71 )
(Tn.) E(XTT(x,<ny}) {X1<a’“}
Pl|——>e) < —
Sop ([Pl ze) o 3 MR ) o 5 A
Note that for all z € R, Z {“<“k} = Y 25 < 52— since the sum is a geometric series
k:ak>x

with a common ratio of « 1 and first term less than 2=!. So using linearity of expectations

and the assumption of the proof, we can continue to examine the sum as follows:

< E(XTLiycar)) 2. inﬂ{Xlgak} 2 ( X\ 2
1e2ak g2 ak —e2 \l—-al) (1-a)t

k=1 k=1

In particular, this bound is finite, and we can thus use the first Borel-Cantelli Theorem
(Theorem 7.1, Page 60) to say that P ( _Tnk_:i(Tnk)

i.o.) = (0. Since ¢ was arbitrary,
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this means that s 2Um) @5 o Further, since we have assumed each X; is positive and
since we know ]lggo Y ]li_go X;lix,<jy = X1, we can apply the Monotone Convergence

Theorem (Theorem 5.7, Page 43) to conclude that lim E(Y;) = E(X;) = p. From how we
j—o0

defined T,, we have E(T},) = E(Y1) + E(Ya) + --- + E(Y,) = 2l — LS g(y;) 2%

Ty, —E(Tnk) a.s.

Combined with the argument that lim 0, this means lim Ty s w1 and so,
k—>oo ng k—oo Tk
from our second step, lim [#o=Te| 20 — =26 2%
n—00 k

Finally, we can use interpolation. Since we have assumed X; > 0, we know that {S,}
is non-decreasing. As such, given some n, there is a k such that ny < n < ng,; and

Sn Sn Sn Sn
consequently —& < Sno< DML Mk T < Sn < ZlebLIERL  \We have already shown
S Nk41 n ng Nk+1 Nk n Nk+1 Nk
Png

o 2% 1 and know % 2% « since ny = |[a¥|. So in the limit, the aforementioned

inequality becomes —u < liminf S" < limsup 2 Su < qu. Since this holds for all @ > 1,
n—0o0 n—00
we can take a monotonically decreasmg sequence oy N\, 1 and then with probability 1 we

have -& < {hm inf S” < lim sup 2o | < qgu. Since this holds for all £ in our sequence, we
n—00 n—00
have p = lim £ < {hm inf S" < lim sup "] < lim agpu = p. This sandwich proves that
k—oo Yk n—oo n—00 k—o0
lim % = p almost surely. |
n— o0

64



7.3 Problems Flaherty, 65

7.3 Problems

Problem 7.1) Let {X;};°, be iid Exponential(1) random variables, i.e. P(X; >
x) = e ® for x > 0. Let M,, = max;<;<n X;.

a. Show that IP(limsup X,,/In(n) =1) = 1.
n—oo

For all € > 0, we have:

iﬂ?(lﬁg 1+5) Z]PX > In(n)(1 +¢)) Zelnn1+€:inll+€<oo
n=1 n=1

Then by the first Borel-Cantelli Theorem, ]P(l)in) > (14¢) io.) =0, and in particular

< (1 + ¢) almost surely. Since this is true for every ¢ > 0, it must be the case

. X,
lim sup = o)
n—oo

that lim sup

n—oo

Xn
In(n)

< 1 almost surely.

On the other hand, we have:

Zp(mzl)zzﬂ)()(nzlﬂ(”))zz =2 =
n=1 n=1 n=1 n=1
Then since the random variables are independent, by the second Borel-Cantelli Theorem,
P(ln(n) >1 i o) = 1, and in particular limsup - & > 1 almost surely. This proves both
n—o00
directions.

b. Show that P(liminf M,/In(n) > 1) = 1. As a hint, use the fact that
n—oo

Y e ™" < oo for any ¢ < 1.

n=1

For all € > 0, we have:

00 Mn
;P (Mn) (1—¢ ) ZIP M, < In(n)(1—¢))
= Z P (X; <In(n)(1 —¢))" Independence and definition of maximum
n=1

(o] n oo 1 n
— Z (1 — e~ (nmO=2))" = Z <1 — 1_8) Identical distributions and simplifying
n

So by the first Borel-Cantelli Theorem, P(&%= < (1 —¢) i0.) = 0 and in particular

In(n)
liminf Mz > 1.
n—oo m(n)
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Problem 7.2) Let {X,, };-, be any sequence of random variables. Show that there
exists a sequence of constants {c,},.; such that - 1 o Xn 225 0.

Let € > 0 be given. Then we see

[e.e]

i]P(% > g) = i]P(Xn > cng) = il — ]P(Xn < cng) = Zl — Fx, (cne)
n=1 n n=1 n=1 n=1

where F'x, is understood to be the cumulative distribution function of X,,. Then a choice
of ¢, = n (eventually) forces F, (c,e) > (1—-5) since hm Fx, (t) = 1 and since ¢ is positive.

Then using this sequence, we have (for some k):

o) 00 k o)
ZE)(%EE) :Zl—FXn(cns)SZl—FXn(cn€)+ Z n2 <k+ Z —<oo
n=1 n n=1 n=1

n=k+1 n= k+1

Then since ) ]P(f—: > 5) < 00, we use the first Borel-Cantelli Theorem to say that

n=1

IP(X— > ¢ i.o.) = 0 and in particular that ]P( lim % < 6) = 1. Since this holds for all

Cn T n—oo n

e > 0, we must have ]P( lim % = O) = 1 as desired.

n—oo

Problem 7.3) Let {A,,},- , be a sequence of independent events such that IP(A,,) <
1 for all n and such that IP(|J A;) = 1. Show that P(A,, i.0.) = 1.

=1

By the second Borel-Cantelli Theorem, since {A,} ~, are independent, if we can show

that Z P(A,) = oo, then we will have P(A, i.0.) = 1. If limsupP(A4,) > 0, then clearly
=1

n—oo

we have this result. So we can assume that lim suplP(4,) = 0.
n—oo

First notice that lP(Ej Ap)=1 = ]P(( U A,) ) =0 = P( ﬂ AS)= H P(AS) =0

n=1
by DeMorgan’s Laws and the independence assumptlon Then applymg the negatlve natural
log to both sides, we have —In(0) = —In (H IP(A%)) — o0 = » —In(P(A4%)) =
n=1 n=1
o . o0 1
- -P(4,)= S (—1_P<An))-

We have proved earlier that for any real number x, 1 + z < e*. In particular, for any

y < 1 we have [1 + (ﬁ) = 1%] < Ty, Applying this to the equality obtained above,

00 P(An)
we have oo = 2—31 In (1—IP1(A ) Z In (el P(4; >> = ]P Z — ]P P(A,). Then
since limsup P(4,,) = 0, hm T(A) =1 and we see Z P(A), = oo as desired.
n—oo n=1
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Problem 7.4) Without appealing to the Strong Law Of Large Numbers, prove the
weak L? law of large numbers (“Weak” refers to convergence in probability as
opposed to almost sure convergence, and L? refers to the assumption of bounded
variance.). Assume Xj,...,X,, are uncorrelated random variables with E(X;) =
p for every i, and V(X;) < C for every i, where C is some finite constant. Define
S, = X1 + -+ + X,. Show that S, /n converges to p in probability as n — oo.

Let € > 0 be given. Since the random variables are uncorrelated, the sum of their variances

is the variance of their sums. Upon multiplying by £, we see that V(3 £ X;) = V(£ Y X;) =
i=1 i=1

LV(Y X;) < LnC < €. Then by Chebyshev’s inequality, P (|22 — pu| > ¢) < W <
i=1
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8 Central Limit Theorem

8.1 Definitions

Definition 8.1. Characteristic Function: The characteristic function of a random vari-
able X is px(t) = E(e™). This is essentially the Fourier Transform for random variables.

Ezample 8.1: Let X be a binary random variable that takes the values £1 (these are called
Rademacher Random Variables), each with probability % Label the support of X as g,
z1. Then the characteristic function of X is calculated as:

1
, , 1 (1) L
ti Z eztxk]P = 2) = Z elt’”’“]P(X = 13) = ezt(fl)i + ezt(1)§

_ %(Cos(—a isin(—t)) + %(cos(t) + isin(t))
- %(cos(—t) + cos(t)) + %(sin(—t) + sin(t)) = cos(t) sine is odd, cosine is even

Example 8.2: After recalling the Taylor Expansion for e”, we calculate the characteristic
function for X ~ Poi(\) as:

oo o o (/\eit)k ) )
ti E : zt:pklp _ xk E : txke LA 6—)\ § ( _ e—)\e)\e"t _ 6)\(6”—1)
k! k!
k=0 k= ' k=0 '

Definition 8.2. Laplace Transform: The laplace transform of a random variable X is
Lx(t) = E(e7t¥).

Definition 8.3. Complex Modulus: Where z and w are complex numbers, a and b are real
numbers, and ¢ is the complex unit, recall the following facts about complex numbers (the
proofs of which follow from Taylor Series expansions and elementary results from calculus).

1. e = cos(tx) + isin(tx)

2. e?thi—eaebi The distance from the origin is e*=r and the angle from the origin is e”=6.
3. where | - | denotes the complex modulus, |¢'*| = |a + bi| = Va2 + b2

4. fwz] = [w] - [2|

5. |e?| = el

68



8.2 Theorems And Examples Flaherty, 69

8.2 Theorems And Examples

Lemma 8.0.1. Properties of Characteristic Functions: For independent random vari-
ables X and Y and constants ¢, we have

pxry (t) = E(e"XH)) = E(e™)E(e") = ox (t)py (1)
§0X+c(t) — E(eit(:c+c)) — E(eitX)]E(eitc) — eitCQOX (t)
pex (t) = E(e"X) = E(e"DY) = px(ct)

px(0) =E(e"¥) =1

gog?)(O) = ("E(X™) (can recover moments, see theorem below (Theorem 8.1, Page 69))

A e

Lemma 8.0.2. Exchanging derivatives and exponents: If f: (R x R) — C is continu-
ously differentiable in ¢ and there exists a g such that |2 f(¢, X)| < g(X) for all t € R with
E(g9(X)) < oo, then ¢ — E(f(t, X)) is differentiable and 2E(f(t, X)) = E(2 f(t, X)).

Proof.

d
E(f(it+h X)) —E(f(t, X
= lim (f( +h )) (f( ! )) Limit definition of derivative
h—0 h
t+hX)—F(t,X
= }llméE(f( +hX)— ft, )) Linearity of expectations
ﬁ

0
= E(a ft, X )) Dominated Convergence Theorem (Theorem 5.8, Page 43)

Where the last inequality follows by assumption of the proof (there is an integrable g(X') such

that |2 f(t,X)| < g(X) for all t € R with probability one) and the definition of derivative
(2f(c, X) =¥ 2 f(t,X) as h — 0). [

Theorem 8.1. Derivatives Of Characteristic Functions: If E(|X|") < oo, then ¢ has
n continuous derivatives and ™ (t) = E((iz)"e"¥). In particular ¢ (0) = E(i"X"e%) =
i"E(X"™), so we can recover the n'" raw moment of a random variable from finding the n'®

derivative of it’s characteristic function at zero.
Proof. We have £_¢"X = (iX)"e"X. So if E(|X|") < oo, applying Lemma 8.0.2 n times gives
the result. [
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Lemma 8.1.1. If z € C with |z| < 1, then |e* — (1 + 2)| < 2]

Proof. By Taylor Expansion, f(z) =e* =Y 2. f(0)5 =1+ 2+ 22—2, + ---. Then observe:
n=0

oo n

le* — (1+2)| = Z % Taylor Expansion about 0 for e*
n=2
1
< ]z]QZ o Since |z| < 1 by assumption, |z|* > |z|" for n > 2
— 1
< |z? Z S For n > 1, n! > 2!

= |2 Z = 4l

|
Lemma 8.1.2. For all z,w € C and n € N, |2" — w"| < n(max {|z]|, |w|})"*
Proof. Without loss of generality, assume |w| < |z|. Then:

Zn . wn — (Z . w)(zn—l +wzn—2 4. +wn—22 + wn—l)

2" —w"| <z —wl(]2]" 4 Jwl|zP A+ 4 Jw]" P2 + Jw[*TY)  Triangle Inequality
<lz—w|(|z|" 2|24 272 2 Assumed |w] < 2]
<le—wl-n- 2"

|

Lemma 8.1.3. If {c,} € Cis a sequence of numbers converging to ¢, then lim (14-%)" = e°.

n—oo

Proof. By the triangle inequality, !(1 + )t — ec| < ’(1 + )" — e | + |en —ef|. In the
limit, the second term in the sum vanishes and, after multiplying an exponent by one and
flipping the order of the difference, we have |(14 )" —¢e¢| < |(e )" — (1+ <)"|. Notice

that [1 4+ 2| < ‘e%| from the Taylor Expansion in (Lemma 4.1, Page 34). So identifying
e with w and % with z in (Lemma 8.1.2, Page 70), we can further bound our expression
with ’(ec -1+ < | <nle®|" e - (14 <=)|. Since ¢, converges to ¢ in the limit,

C'n

< 1 Wlth thls in mind we can apply (Lemma 8.1.1, Page 70) to improve
n—1
| c;; |2

for all large n,

Cn Cn

our bound to n|en \e w—(1+ c”)| < nlemn . Some final arithmetic gives us
cn n—1 cn n—1 \Lnl len .

nlen |22 = nlew ‘C—’;I < e r el < €%enl  which goes to zero as m goes to

. . n n n )

infinity. |
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7, 0>0
Lemma 8.1.4. 115150 OT Siniat) dt=4¢0, 6=0

=, 0<0
Proof. If 9 = 0, then the integrand is 0. So assume 6 # 0. Using the subst1tut10n u = 6t
we have 2u = ¢ and so du = 6dt. Then [ r Sm(et dt = Oat %[ u] = Oet Sin) Jy, since as
t varies from 0 to 7', u = 6t varies from 0 to 0T This is the sine integral, Wthh evaluates
to sgn(6) - O‘GT‘ sn) gt. Since we are interested in the limit of this quantity as T — oo, it
suffices to show hm OT S”; dt =%

Our strategy is to write the integral as a double integral that will help us get a usable
limit. Since [[“e Wdy =1, t [ e dy =1 and so:

/OT Sint(t) dt = /OT sint(t) . (t /OOO e dy) di — /OT (/Ooo sin(t)e™% dy) dt (8.1)

See that the integrand is integrable:

[([rorre)e

:/OW (/0 ) dt + T( ]sin(t)|e_tydy> dt
)
dt

sin(t —t
T T
< / (/ sin(t)e ¥ dy | dt + ( e dy) dt
0 0
T 1 1
:/ sin(t)— dt—i—/ n
/ 1dt + / 1dt < oo

So we can apply Fubini’s Theorem (Theorem 7?7, Page ?7?) to flip the integrals and write:

/OT Slnt( ) g — /0 ° ( /0 Tsin(t)e_ty dt) dy (8.2)

We now try to evaluate the inner integral, call it /(¢ f sin(t)e~" dt, using integration
by parts. Choose u = e " and dv = sin(t) dy so that Lu = —ye ty and v = —cos(t). Then
we can write:

I(t)= (—e™ cos(t))|0T —/0 ycos(t)e ™ dt (8.3)

We again apply integration by parts to the remaining integral. Choose u = ye™% and
dv = cos(t) dt so that $u = —y?e™" and v = sin(t). Then:
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/0 ycos(t)e W dy = (ye ™ sin(t))|0T—/O —y’e Wsin(t)dt = (ye Sin(t))‘g—l—yQI(t) (8.4)

Equations 8.3 and 8.4 combine to say:

10 = 1 (e eos) [ — (e sin) )
(1 T on(T) = e ()

When y > 0, the second factor is bounded and tends to 1 as T' grows large. Thus there
exists a ¢ such that 1+ > (1—ecos(T) —ye sin(T)) < 71,7 for all T,y > 0 and we can
use the Dominated Convergence Theorem (Theorem 5.8, Page 43) to say:

T : o0 T
lim / smt(t) dt = lim </ sin(t)e ™" dt) dy Equation 8.2
0 0 0

T—o0 T—oo

T—00

>~ 1
:/ _d
o 1ty

— a2 T
= tan (y)‘o =3

00 T
= / lim ( / sin(t)e " dt) dy Dominated Convergence Theorem
0 0

Lemma 8.1.5. There is a ¢ € R so that |fT Smget dt| < cfor all # € R and for all T > 0.

Proof. From Lemma 8.1.4, there exists a t, such that for all T" > ¢, | [ ‘ T sin(0t) et dt’ < 7 (since

T sin(6t)

in the limit, the difference between | [ =,

dt’ and 7 becomes arbltrarlly small).

sm

For T' < ty, notice that ‘fT sin(8t) dt‘ < ’fo t "1dt = T. So a choice of
¢ = max {m, o} yields our result. [
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Theorem 8.2. Inversion Formula: The characteristic function uniquely determines the
law of a random variable. Specifically, for all continuity points a,b of Fyx, P(a < X < b) =

T €7i a_efi b

T e —ita __ 7ztb

r - goX(t) dt. By the Riemann-Stieltjes

(Definition 3.2, Page 21) view of expectation, this is I (¢ f (foo e Weitey, (dm)) dt.
We want to flip the integrals, so aim to apply Fubini’s Theorem (Theorem 77, Page ?7).

Proof. For notational ease, define I(t) =

To do so, we must show that the integrand is integrable. Since ‘ew’ = 1 for all 6, observe:

e — e it e — e it —it ztz it
it | it e = ydy‘ }</|€ Y| dy = (b—a)
S0 f_T <ff°oo Me' lx (dx) ) TT <f°°oo (b—a uX(dx)> dt =2T(b—a) < oo,
which proves we can apply Fubini. Thus I(T) = [~ Oooo ( ’ eﬂm;eﬂtb itz dt) px (dz). We now

closely examine the integrand.

Using Euler’s Formula, write the integrand in the form A + B:

e~ ta _ e—itb . eit(a}—a) _ eit(az—b)
it it
_ cos (t(x —a)) +isin(t(xr —a)) cos(t(x —b)) +isin(t(z —b))
1t it
_ cos (t(x —a)) — cos (t(x — b)) N sin (t(z — a)) — sin (t(x — b))
it t
=A+B

Using the linearity of the intergral, f (A+ B)dt = f Adt + f Bdt. Since cosine is
an even function in ¢, the numerator in A is an even functlon Since zt is an odd function in
t, the denominator in A is an odd function. So A is an odd function being integrated over
a symmetric interval, and thus evaluates to zero. After abbreviating S(0,7) = OT Smtet) dt,

our integral becomes:

1) = /_00 (/T sin (H(z — a)) — sin (t(z — b)) dt) i(d)

0o =T 13

:2/2 (/OT Sm(t(:v—a));sin(t(a:—b)) dt) (o)

= 2/00 [S(z —a,T)—S(x—b,T)] ux(dx)

o0

Taking the limit and applying Lemma 8.1.5, we see:

Jim I(7) =2 /_ h Jim [S(z — a,7) ~ Sz — b, )] px(d)
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We can compute the inside limit directly from Lemma 8.1.4. Since a < b, we have:

lim [S(x —a,T)— S(x—b,T)]

T—o0
= lim S(x —a,T) — lim S(z —b,T)
T—o0 T—oc0
(2, (x—a)>0 (%, (v—-b)>0
=<0, (r—a)=0—-40, (x—=5b)=0
(5 (z—a)<0 =, (-0 <0
)
™, a<x<b
=495 a<(wz=b)or(r=a)<b
0, z<aorz>b

Then breaking up the integral, we reach our desired conclusion:

lim I(T) =2 (/
T—o0 z€(a,b)

st [

z{a,b} 2

=2 <7T]P(a <X <b)+ glP(X € {a,b})>
=2rP(a < X < b)

74
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Theorem 8.3. Continuity Theorem: X, % X if and only if vx, (t) = ox(t) forall t € R.

Proof. Assume X, < x. By definition, X,, converges in distribution to X if for all bounded
and continuous f, lim E(f(X,)) = E(f(X)). Since f(z) = € = cos(tx) + isin(tx) is
n—oo

bounded and continuous, we have lim E(e™*") = lim ¢y, (t) = E(e"™) = px(t).

Now assume @y, (t) = @x(t) for all t. We focus our efforts on proving that {X,} ~, is
tight, i.e. we want to show that there is a M > 0 so that P(|X,| > M) is arbitrarily small
for any n.

We start with the definition. The random variable may or may not have a density function,
so to keep to the most general terms, let px, denote the law of X,,. By the Riemann—Stieltjes
(Definition 3.2, Page 21) view of expectation, we have:

ox (t) = E(et5r) = / e e (da) (8.5)

R

Now by Lemma 8.0.1, px,(0) = 1. If X,, is tightly concentrated around 0, then small
perturbations t about 0 should yield values of x, () close to one. On the symmetric interval
(—0,0), the total deviation of ¢y, (¢) from 1 is ffa(l —px, (t)) dt, so the average deviation is

= ff s(1 —x,(t)) dt. Plugging Equation 8.5 into this, we see the average deviation is:

5L (fni))

Since juix,, is a probability mass, 1 — ([, ey, (dz)) = [, px, (dz) — ([ €™ px, (dz)) =
Jo (1 —€") pux, (dz) and we can write the average deviation as:

2—15 i (/R (1—e™) ux”(d@) dt = 2—15 A (/i (1—¢™) dt) pix, (dz) (8.7)

After applying Fubini’s Theorem (Theorem ??, Page ?7) to exchange the order of the
d pite , we can evaluate the inner integral in Equation 8.7 as:
5

integrals. Since <e"™ = ixe
1 efiém o €i6x
dr) = — 20+ — d :
> 6) px, (dz) 25/R< +— ) 1ix, (dr) (8.8)

dt
1 / . eita:
20 Jr i
By Euler’s formula, e=%% — ¢¥%% = (cos(—dz) + isin(—dz)) — (cos(dx) + isin(dx)). Cosine
is an even function, and sine an odd function, so the numerator can be written in the form
(cos(dz) —isin(dx)) — (cos(dz) + isin(dx)) = —2isin(dz). So Equation 8.8 can be written:

1 (25+ M) i (dz) = — /}R (25 _ M) v (de)  (8.9)

itx

20 Jg 1 20 x

5
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It is natural to factor out 26. So Equation 8.9 becomes:

2% /R 26 (1 - Sm;jx)) pix, (dz) = /]R (1 - Sin;j”) px, (dz) (8.10)

Since Sm(s(jm) < 1 (this follows since for f(y) = y — sin(y), di (y) = 1 —cos(y) > 0,

and f'(0) = 0, so y — sin(y) > 0), the integrand 1 — s1n5(5x)

sin(dx in(dx in(dx
fR (1 - ( )> px, (d) f{\x \>5}< : ( )> px, (d +f{p{ <2} (1 — = ( )> px, (dx),
the average deviation is:

5 [ amemoya= [ (12200 g (o) > fro (757

is always positive. And since

—_

) px, (dr) (8.11)

When |X,,| > 2, |dz| > 2 and so sin(dz) <land1-— sin(9z) > 1 Then we can write:
1) ox 2 ox 2

0
55 [ e a2 |

- (1_smé<jx>) ix., (dz) = /{ L) (812

Xa>2} 2

Integrating Equation 8.12, we have:

1 1 2
> - “p (x> 2 1
25/ o) /{|Xn|>2}2“Xn<dx) 2 (' ”’—5) &1

Now let € > 0 be given. Since }tiﬂ(l) vx(t) = px(0) = 1, the definition of limit guarantees
H

the existence of a d; such that whenever |t — 0] = [¢t| < d1, |¢x(t) — 1| < e. Further, since
ex(t) <1,1—px(t) <|px(t) — 1| < e. So choosing § < 0y, we see:

1 [0 1 [0 1
55 —5( px(t))dt < 55 /—58dt 25(58—1—58) £ (8.14)

Since lim (1 — ¢x, (t)) = (1 — px(¢)) and since (1 — ¢x, (t)) < 2, we can apply the Dom-
n—oo
inated Convergence Theorem (Theorem 5.8, Page 43) to say that lim % ff l—oy, (1) dt =

2 f hm —x, (t = = f )) dt. So Equation 8.13 and Equation 8.14 become:
P1x,)>2) < lim - /5(1 it =L [ (1= ox(t)dt < (8.15)
n _5 n1—>r2025 Yx, _25 s Yx >~ €& .
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Since ¢ > 0 was arbitrary, this proves that {X,,} -, is tight. Then by Helly’s Selection
Criteria (Theorem 5.12, Page 46), every subsequence of { X, } -, admits a further subsequence
that convergences weakly. Since ¢x, (t) = ¢x(t), and since characteristic functions uniquely
determine the law (Theorem 8.2, Page 73), that weak limit must be X. Since this limit holds

d :
for every subsequence, we must have X,, — X as desired. |

Theorem 8.4. Central Limit Theorem: Let {X,}~ be an iid sequence of random

variables. If V(X;) = 0% < o0, E(X;) = u, and S,, = > X;, then S";\/—nf 4 N(0,1).
i=1 d

Proof. By the Continuity Theorem (Theorem 8.3, Page 75), it suffices to show the char-
acteristic functions converge in distribution. In Problem 4.2 Page 37, we derived the mo-

+2
ment generating function of a standard normal random variable Y as My (t) = ez. Since
My (t) = E(e?) and since py (t) = E(e'Y), substituting ¢ for it in the computation in Prob-
2

lem 4.2 yields ¢y (t) = ez . So, we aim to show the characteristic functions on the left side
converge to this value.

Assume E(X) = p = 0 (if not, just replace each X; with X; — p). With this assumption,
V(X) = E(X?) = 02 and so for a single random variable X, we have:
2

t
ox(t) = ox(0) + @ (0) + 90;'((0)5 + o(t?) Taylor Expansion about ¢ = 0
t2
=1+ 025 + o(t?) Part 5 of Lemma 8.0.1

Since each X; is independent, by part 1 of Lemma 8.0.1:
2

. () = (1 + 0—2% 4 0(t2))n

For any fixed n, \/%7 is a constant, so by part 3 of Lemma 8.0.1:

2 n
t
t [Wﬂ} t 1 2 2 \\"
n (0)=8, — | =| 1+o2 = - (14 L
© iﬂ() ( n02> +o 5 -I—o([ naz] +2n—|—0 —

Then call ¢, = %2 +n- 0( 2 ) See that lim ¢, = —% since, by the definition of

2
no N—00 2

2 . 2 2 2
0 (t—Q), there exists a sequence a,, —— 0 such that o (#) = L5a, and then n-o (;7) =

no

;—22% 27%00. So by Lemma 8.1.3:

. . t2 t2 " . cn n ;]52
lim ¢_s, (t) = lim 1—|—2—+0 — = lim <1+_) —e2
n

n—0o0 /.52 n—r00 no? n—00 n
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8.3 Problems

Problem 8.1) Roll 166 six-sided dice and add the outcomes. Using the Central
Limit Theorem, estimate the probability that the total is at least 537.

6
The mean of one roll is p = & = %
n=1

6(641)(2:6+1)

6 2
The variance of one roll is E(X?) — E(X)? = ( > %) — (%) — 6 _ 49 _ 3
n=1

6 4 12

_166.7
Then using the central limit theorem, we get an approximation of P (Z > %ZW%), or
about P(Z > —2) ~ 0.975.

Problem 8.2) The Mega Millions lottery is played as follows. You pick five distinct
integers between 1 and 70 (order doesn’t matter), as well as one integer between
1 and 25 (which could be a repeat of one of the five other numbers). The lottery
does the same, uniformly at random from all possible choices. If all six numbers
match, you win (a share of) the jackpot.

a. Compute the probability of winning the jackpot.

There are (750) ways to pick the five numbers without replacement or regard to order. So
the probability of matching all five is ﬁ We consider the sixth selection independent of

5

the first five picks, so the total probability of winning the jackpot is 25.%70) = L
5

302,575,350 °

b. Now suppose 1 million people play (where each person selects their six num-
bers independently at random, uniformly from all possible choices.) Estimate
the probability that no one wins the jackpot.

_ _ 1 _n ~ 1 :
We have n = 1,000,000 and p = 3025753500 SO parameter A= >~ 300 Then using the

random variable X ~ Poi(ﬁ)7 we see P(X =0) = A[O]Fog!m = e~a0 ~ 0.9967.
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Problem 8.3) Suppose ¢x : R — C is a characteristic function. That is, there is
a random variable X such that px(t) = E(eX) for all t € R.

a. Show that ¢ x(—t) is the complex conjugate of ¢ x(t).

Observe oy (—t) = E(e7"¥) = E( cos(—tX)+isin(—tX)) = E( cos(tX)—isin(tX)) since
cosine is an even function and sine an odd function. This is exactly the complex conjugate
of px(t) = E(e'™) = E(cos(tX) + isin(tX)).

b. Show that |px(t)|? is also a characteristic function.

First note that for any complex number z, say z = a + bi, |2]* = (Va? + b2)2 = a® + 1°.
This is precisely z - z = (a + bi)(a — bi) = a® — b*i* = a® + V.

So from part a, [ox(t)]> = ox(t) - px(=t) = E(e™)E(e ). We want to show this
is a characteristic function for some random variable Z. Consider Z = X — Y where Y is
an independent copy of X. The characteristic function of Z is then px(t) = E(e®XY))
E(eXe~ ) = E(e™)E(e~™Y) where the last equality follows from the independence of X
and Y (Lemma 8.0.1, Page 69). Since characteristic functions uniquely characterize distri-
butions (Theorem 8.2, Page 73), and since Y was chosen to have the same distribution as X,
we can write the final equality as E(eX)E(e~"¥) as desired.

c. Show that Re(¢x(t)), the real part of ¢ x(t), is also a characteristic function.

For any z = a + bi € C, Re(z) = %= since w = %a = a.
From part a, see:
1 1 1
Re[px(t)] = igo(t) + 590(—15) = §<E(cos(tX) +isin(tX)) + E(cos(—tX) + isin(—tX)))

Using linearity of expectations, we have:
Re [px(t)] = % (E( cos(tX) + cos(—tX)) +iE(sin(tX) + sin(—tX)))
Using the parity of sine and cosine, we further have:
Re [px(t)] = % (]E(Q cos(tX)) + ZE(O)) = %(QE(cos(tX))) = E(cos(tX))

We want to show this is a characteristic function for some random variable Z, and our
steps have already revealed the solution. Consider Y independent of X with P(Y = 1) =
P(Y = —1) = 1, and the random variable Z = XY. Then we have:

1 1

pz(t) = E(e"?) = §E (e™*) + EE (e7"%) = E(cos(tX))
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Problem 8.4) Show that if X and Y are independent and X + Y 2 X, then
Y = 0 almost surely.

Since characteristic functions uniquely determine distributions of random variables (Theo-
rem 8.2, Page 73), and X +Y is equal in distribution to X by assumption, ¢x(t) = @x4v(t)
for all ¢ € R. Since X and Y are independent, by properties of characteristic functions
(Lemma 8.0.1, Page 69), oxiv(t) = px(t)py(t). Then as px(t) = ox(t)py(t) for all ¢, we
must have py () = 1 whenever ¢x(t) # 0.

Further, since ¢x(0) = 1 and since characteristic functions are continuous, there exists a
d > 0 such that whenever t € [—0, 9], ¢x(t) # 0 (and consequently ¢y (t) = 1). In Equation
8.11 from the proof of the Continuity Theorem (Theorem 8.3, Page 75), we showed that:

I sin((SY))

2 | (= er0) di=E (1 -

Since ¢y (t) = 1 for every ¢ in (=4, 0), the integrand becomes a constant 0. Since sine is

an odd function, Sing,y) = Sin;gy)‘ <1 and thus 1 — % > 0.

A non-negative random variable whose expectation is 0 is almost surely 0. So Siné(—;iy) “,
which implies Y 2 0 from the result lir% sin(r) _ q,
z—
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9 Conditional Expectations

9.1 Definitions

Definition 9.1. Conditional Probability: The conditional probability of an event A given
an event B is P(A|B) = %. Intuitively, we first restrict our sample space to outcomes
from €2 that are in B, then within this restricted space, we consider the parts of A that can
actually occur (namely A N B), before dividing by P(B) to ensure that the probabilities in

B sum to 1.

Ezample 9.1: A dice roll. Take (2 = {1,2,...,6},F = 2% P(A) = |A]). Consider the
events A = {Greater than 3} = {4,5,6} and B = {is odd} = {1, 3,5} (and so ANB = {5}).

__ P(ANB) _  P{5}H)
Then P(A|B) = == = P({fﬁg&}) =1

Definition 9.2. Bayes’ Theorem: We can express the conditional probability of A given B
in terms of the conditional probability of B given A, which may be useful for computations.

In particular, P(A|B) = szgff) — Pﬁ)ffgg“) — P(A%ﬂ;]é?\A)_

Ezample 9.2: Suppose a medical test has a 1% significance (false positive rate) and a
95% sensitivity (true positive rate). If 5% of the population has a disease, and a random
person from the population tests positive for the disease, then the probability that the
person actually has the disease is about 83.3%. This follows since P(A) = 5%, P(B|A) =
P(test positive|sick) = True Positive Rate = 95%, and, by the law of total probability,
P(B) = True Positive Rate - Probability Sick + False Positive Rate - Probability not sick =
P(BJA)P(A) + P(B|A°)P(A°) = 152 + 10515 = 1oe5- Then we see that P(A|B) =

P P(BA) = &2 . 0.95 ~ 0.833.

Example 9.3: “Absence Of Evidence Is Not Evidence Of Absence...right?”. Wrong. Label
event A as “something is present” and event B “evidence is observed”. The question we are
considering is if P(A¢|B¢) > P(A°). Since P(A¢|B¢) = %P(BCMC), this is equivalent to
Pg(gggc) > 1. So, we see that absence of evidence is indeed evidence of absence
(as long as “lack of evidence” is more probable when “something isn’t present” than when

“something is present”).

considering if

Non-example 9.1: In the same setting as Example 9.2, assume a disease has a 5% prevalence,
and a test for the disease has a 1% false positive rate and a 95% true positive rate. If a
person goes to the doctor to take the test because they feel ill, and they test positive, then
the probability they actually have the disease cannot be assumed to be 83.3% as in Example
9.2. This is because a person who self-selects into testing is not a random member of the
population.

Definition 9.3. Inner Product: A function that is symmetric, bilinear, and positive defi-
nite. By bilinear, we mean f(u+wv,w) = f(u,w)+ f(v,w) and f(k-u,v) = k- f(u,v) for any
scalar k and vectors w, v, w. By symmetric we mean f(u,v) = f(v,u). By positive-definite
we mean f(u,u) > 0 with equality holding only when u = 0.
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Definition 9.4. Measurable Random Variable: A random variable X is G-measurable
if every set in o(X) is also in G; the information in G is sufficient to determine X.

Ezample 9.4: In the example for sigma-algebras generated by random variables (Example
6.1, Page 51), we saw a random variable Sy(w) which returned the number of heads that
came up in the first two flips of a coin (e.g. So(Apry) = 1). Since 0(S,) C Fa, So was F
measurable. In other words, F, had all the information (and more) to determine S,.

Non-example 9.2: In the same setting as above, Sy is not (F; = {0, Q, Ay, Ar})-measurable.
Intuitively, this is because knowing the outcome of the first coin toss does not given sufficient
information to determine the outcome of the first two coin tosses (which is what determines
the value of Sy). For example, Ay y is in o(S2) but not in Fj.

Definition 9.5. Conditional Expectation (Given An Event): The conditional expecta-

tion of an integrable random variable X given an event A € F is the number E[X|A] = ]EI(P‘)&)“) :

Ezample 9.5: A dice roll. Take (Q,F,P) as ({1,2,...,6},2% P(A) = |A|). Consider
X (w) = w (it just reports the outcome of the dice roll) and the event that X is odd. Then

1
E(X]X is odd) ==l =07 = 3.

Definition 9.6. Conditional Expectation (Given A Sigma-Algebra): The conditional
expectation of an integrable random variable X given a sigma-algebra G C F is a random
variable Y = E [X | G] satisfying:

1. Y is G-measurable (i.e. for all B€ B(R), Y }(B) ={w € Q:Y(w) € B} CG)
2. Forall A€ G, E(X1,) = E(YLy)

An interpretation is that Y is the “best guess” for X given the information provided by G.
See that conditional expectation on a sigma-algebra is a random variable, but conditional
expectation on an event is a number. Note that conditioning on another random variable is
really conditioning on the sigma-algebra generated by the random variable.

Ezample 9.6: In Example 9.5, we saw that E(X|X is odd)=3. For the same reason,
E(X|X odd)=4. Where G is the sigma-algebra providing the parity of the roll (G =
3, we{l,3,5}
4, we{2,4,6}

Example 9.7: X is independent of G (that is every set in o(X) = {X1(B) : B € B(R)} and
every set in G are independent). Since G provides no information about X, intuitively, our
“best guess” for X given this irrelevant information is E(X). This is seen to be the case,
E[X]|G] = E(X), since a. E(X) is a constant, and all constants are measurable functions
and since b. for any A € G, E(X1,4) = E(X)E(14) = E(E(X)1,4) where the first equality
comes from independence and the second equality comes from linearity of expectations.

{0,{1,3,5},{2,4,6},9Q}) we can record these together as E [X|G] =

Example 9.8: On the other end of the spectrum, if X is G-measurable, then G provides
enough information to determine X; we don’t need to “guess” what X is and see E [X|G] =
X. Indeed, X fulfills both properties of conditional expectation— it is G-measurable by
assumption, and tautologically for any A € G, E(1,X) = E(14E [X|G]) = E(14X).
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9.2 Theorems And Examples

Lemma 9.0.1. Conditional Expectations Are Linear: If X;, X, € L'(P), then for all
c € R, we have E[X| + cX; | G] © E[X1|G] + cE [X3|G].

Proof. Since E [X;|G] and E [X;|G] are ipso facto G-measurable, and since measurability is
preserved by sums and products by constants, E [X;|G] 4 cE [X5|G] is G-measurable. So we
only need to check the defining property of conditional expectation, that for any A € G,
E((X1+¢Xs)1a) = E((E[X1|G] + cE [X3|G]) 14). For notational ease call ¥; = E [X;|G] and
consider any A € G. Then observe:

E (X1 4 cX32)14)
=E(X114)+ cE(X314) Linearity of expectations (Definition 3.6, Page 21)
=E(Y114) 4+ cE(Y214) Property of conditional expectation (Definition 9.6, Page 82)
= ]E((Yl +cY3)1 A) Linearity of expectations again

Lemma 9.0.2. Conditional Expectations Respect Dominance: If X; < X, then
E[X,19] € E[X.|9].

Proof. Let Y; and Y; satisfy the two properties of conditional expectation (Definition 9.6,
Page 82) for X; and X, respectively. Then for any ¢ > 0, consider the event A. =
{Y1 =Y, > ¢}. See that:

P(A.) =E(14,) Expectation of indicator is probability of event
<E(L0-WL) When 1) £0. 2(0() - Ya(w) 2 1
= é [E(Y114) —E(Y21,4)] Linearity of expectations
= é [E(X114) —E(X214)] Property of conditional expectations
= é [E(X; — X5) 14] Linearity of expectations
=0 By the assumption X; < X,

Since P(Y; — Yy >¢) <Oforalle >0, P(Ys > Y;) = 1 and so E[X;|¢] < E[Xz|G]. W

Lemma 9.0.3. Uniqueness Of Conditional Expectations: If Y/’ and Y both fulfill the
properties of conditional expectation for E[X|G], then Y’ 2 Y. Since the uniqueness is up
to a set of probability zero,to be precise, we say Y is a version of E [X|G].

Proof. Take YY" satisfying the two properties for conditional expectation (Definition 9.6,
Page 82). Since X < X, we have Y <Y’ (Lemma 9.0.2, Page 83) and by symmetry Y’ <Y
So Y = Y’ almost surely. As a precaution, note that just because Y = Y’ and Y is G-
measurable doesn’t mean that Y’ is G-measurable (unless G is a compact sigma-algebra). W
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Lemma 9.0.4. Pull Out What Is Known: If X, XZ € L'(P), and if Z is G-measurable,
then E[XZ|G] ¥ ZE [X|G].

Proof. Let Y = E[X|G]. We want to show that for every A € G, E(XZ1,) = E(YZ1,4).
Since Z1, is G-measurable, it suffices to show that E(XW) = E(YW) for any W that is
G-measurable (and such that XW is integrable). To do so, we use the 1-2-3-4 method.

First, indicator random variables. For W = 1, for some A € G, we have E(X1,) =
E(Y14) by the second condition for conditional expectations.
Next, simple random variables. For W = )" ¢;14 we have E(XW) = Y E(X1,) =
i=1 i=1

Y GE(Y1,) =E(YW) by linearity and the previous step on indicator functions.

Third, non-negative random variables. If X, W > 0, then W,, = min {Q%LT‘WJ,TL} is a
simple random variable such that 0 < W,, /W almost surely as n — oo. Hence 0 < XW,, *
XW and 0 < YW, YW since conditional expectations respect dominance (Lemma 9.0.2,
Page 83). So E(XW) = nh_}rglo E(XW,) using the Monotone Convergence Theorem (Theorem

5.7, Page 43), and by the previous step of simple random variables and applying the Monotone
Convergence Theorem again, lim E(XW,) = lim E(YW,,) = E(YW).
n—oo n—oo

Finally, general random variables. Write E(XW) = E((XW)") — E((XW)~). Since
X=Xt"—X andsince W=W+"—-W~, XW=X"W+-X"Y" - XTY" 4+ XY~. Al
four terms are positive, so grouping the terms with positive coefficients together, we have
(XWHT=(XTYT 4+ XY7) and (XW)” = (X"WT 4+ XTW™). Applying linearity:

E(XW) =E(XtTWH) +EX W) - E(X*W™) —E(X W)
We can then use the previous step of non-negative random variables to write:
E(XW) = E(E [X*]g] W) + E(E [X7|g] W) — E(E [X|g] W) — E(E [X~|g] W)
Again applying linearity, we have:
E(XW) = E((E [X*g] ~E[X~Ig] )W) —E((E[X*|g] —E[X"|g])W")
We reach our conclusion after applying conditional linearity (Lemma 9.0.1, Page 83):
E(XW) =E((E[X" — X~|g])W") —E((E[x" - X"|g] )W)

—E((E[x]g]))W*) - E((E[X|g])W")
=E((E[X|g))W - (E[X|g])W+)
~E((E[X|g])W)
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Lemma 9.0.5. Tower Property: If G; C G, are both sigma-algebras (i.e. G, has more
information), then E[E [X|G,]|Gi] = E[E[X|G1]|G>] = E[X|G1]; the smaller sigma-algebra
always “wins”.

Proof. We first that show E [X|G;] = E[E[X|Gs]|G1], i.e. that for any A € G;, E(X1,) =
E (E[E[X|Gs]|G1]14) (E[E[X]|G,]|G:] is ipso facto Gi-measurable).

So consider any A € G;. Since G; C Go, A € Gy as well. By the defining prop-
erty of E[X|G,], E(X14) = E(E[X|G,]14). By the defining property of E[E [X|G,]|G1],
E (E[X|G] 14) =E (E[E[X|Gs] |G1]14). Combining the two, E(X14)=E (E[E [X|Gs] |G1]1.4).

The same rationale works to show E [X|Gi] = E[E[X]|G]|G,]. By the defining prop-
erty of E[X|Gi], E(X14) = E(E[X|Gi]14). By the defining property of E[E [X]|G]|Gs],
E (E[X|Gi]14) = E (E[E [X|G]|G2]14). Combining the two gives our result. |

Ezample 9.9: The property that E (E[X | G]) = E(X) is often called the tower property,
but this really follows directly from the definition of conditional expectation by taking
A = Q. Then E(X1,4) = E(E[X | G]14) and since 14 is the constant one, we have
E(X) =E(E[X |g]).

Theorem 9.1. Parallelogram Law: ||[U + V|2 + |U — V|3 = 2||U||3 + 2||[V]|3.

Proof. We have ||[U + V|2 = E(|[U + V]*) = E(U + V)(U +V)) = E(U? +2UV + V?) =
|U13 + 2E(UV) + V][5 and that |U — V|3 = E(U — V|*) = E((U = V)(U - V)) = E(U* —
20V +V?) = ||U||2 — 2E(UV) + ||V]]3. Adding the two, we reach our conclusion. |

Lemma 9.1.1. Existence Of Conditional Expectation For L? Random Variables:
For all X € L?(P) and c-algebra G, there exists a random variable Y € L?(P) such that:

1. Y is G-measurable
2. Forall Ae G, E(X14) = E(Y1,)
3. For any other G-measurable Y’ € L2(P), || X — Y2 < [|X — Y|,

The third criteria gives another perspective for the meaning of conditional expectation,
at least for L? random variables. Conditional expectation is the best L? approximation of X
by a G-measurable random variable Y. Why is L? special? See that whenever U,V € L*(P),
(U, V) = E(UV) is an inner product. We immediately have symmetry and positivity. For
bilinearity, see (U + VW) = E((U+ V)W) = E(UW + VW) = E(UW) + E(VW) =
(U,W) +(V,W) and (kV,W) =E(kVW) = kE(VW) = k(V,W). We require U,V € L*(P)
to ensure E(UV) is integrable. We have |[E(UV)| < E(|UV|) by Jensen’s Inequality (Theorem
4.3, Page 33), and then E(|UV|) = |[UV ||y < ||U]|2]|V]|2 by the Cauchy-Scwharz Inequality
(Corollary 4.4.1, Page 34). Since U,V € L*(P), ||U||2, ||V ]2 < oo.

Proof. First define a value 6 = inf {||X — Y|y : Y’ € L*(P) and G — measurable}. TakeY,, €
L*(P) such that Y, is G-measurable and || X — Y,||s — 0 as n goes to infinity. By the
Parallelogram Law (Theorem 9.1, Page 85) (taking U = X — Y, and V = X —Y,,), for
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all n,m we have ||2X — Y, — Y, |3 + [|[Ym — Yal3 = 2| X — Y,||3 + 2||X — Y,,]|3 and thus
1Y = Yall3 = 2| X — Y, [13 + 2||X — Yo |13 — 4| X — 5(V, — Yo, (the last term on the right-
hand side comes after factoring out a 2). As n and m grow large, the first two terms on the
right-hand side converge to 262. And the last term on the right-hand side is at least 462 since
s(Y, +Y,,) is an L?(IP) and G-measurable random variable and since § was defined to be the

infimum of such values. So Y, is a Cauchy sequence and converges in L*(P) to some value
Y € L*(P).

Next we check that Y has the desired properties of conditional expectation. First, Y,
is G-measurable and Y,, — Y in L?. Since measurability is preserved by limits, Y is also
G-measurable. Observe | X —Y |2 < || X = Y, |l2 + ||Y — Y2 by the triangle inequality. The
first term goes to § and the second term goes to 0, so we know || X —Y||; = § and have shown
the third condition.

For the second condition, take A € G. We want to show that E(X1,4) — E(Y1,4) =
E(X —Y)la) = (X =Y, 14) =0. Forall t € R, || X — (Y +¢14)|2 > || X — Y% by the
third condition mentioned above (since Y + t14 is G-measurable). The left-hand side can
be written E (| X — (Y +t14)]*) = E((X —Y)? + 2t14(X —Y) + t*14) which is | X = Y||35+
2|1 4l|3 — 26(X — Y, 14). As such, 3|13 > 26(X — Y, 14). The left term is quadratic in
t, while the right-term is linear in ¢. So for the inequality to hold for all ¢, we must have
(X =Y, 14) =0 [

Lemma 9.1.2. Existence of Conditional Expectations: For all X € L'(P) (i.e. inte-
grable random variables) and o-algebra G, there exists a random variable Y € L'(PP) that
fulfills the two requirements of conditional expectation.

Proof. We use the 1-2-3-4 method. For any bounded random variable X (which include
indicators and simple random variables), X € L*(P), and so the above lemma (Lemma 9.1.1,
Page 85) will suffice. So we start with non-negative random variables, and consider the
random variable min{X, n}, which is bounded. Let Y,y = E[X A n|G], i.e. for all A € G,
E((X An)l4) = E(Y,14). Conditional expectation respects dominance (Lemma 9.0.2, Page
83) so we have 0 <Y, <Y, (the first inequality comes from the fact that 0 < X An and
the second comes from the fact that X An < X A (n+1)). So {Y,},,, is an almost sure
monotone increasing sequence and (since X is bounded) has a limit Y. Does this Y satisfy
our two conditions of conditional expectations? First, since each Y,, is G-measurable and
Y, Y almost surely, a version of Y is G-measurable. Second, for all A € G, E(X14) =
TLIE&E((X A n)ILA) = JEEOE<Y”1A) = E(Y14) by the Monotone Convergence Theorem

(Theorem 5.7, Page 43) since X A n converges almost surely to X (Lemma 3.4.1, Page 25).

For general random variables, write X = X* — X~. Both E[X |G| and E [X |G| exist
by the previous step, so we can define Y = E [XT|G] —E[X~|G]. We again have to check the
conditions for conditional expectation. It is immeadiately clear Y is G-measurable. Now for
all A € G, B(X1,) = E(X*14) — E(X"14) = E(E[X*|G]) — E(E[X~|G]) = E(Y1,) by
linearity. |
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Theorem 9.2. Conditional Monotone Convergence Theorem: Suppose {X,},y is
a sequence of non-negative random variables such that X,, ~ X almost surely as n — oo,

where E(X) < co. Then E[X,, | G] /' E[X | G| almost surely.

Proof. Label Y,, = E[X,|G], which is well-defined by the existence of conditional expecta-
tions. By assumption of the proof, 0 < X,, < X,,,; for all n € N. Then since conditional
expectations respect dominance (Lemma 9.0.2, Page 83), 0 < Y, < Y4y for all n € N;
{Y5},.en is an almost sure monotone increasing sequence with some limit Y. We aim to show
Y fulfills the criteria for E[X|G]. That is, we want to show that Y is G-measurable, and
show that for any A € G E(X14) =E (Y1,4).

Since each Y, is G-measurable, and Y is the limit of the {Y,}, _y sequence, a version of
Y is G-measurable (almost sure limits preserve measurability).

For any A € G, we see:

E(X14)= lim E(X,14) Regular Monotone Convergence Theorem (Theorem 5.7, Page 43)

n—oo

= lim E (Y,14) How Y, was defined, and the conditional expectation property

n—oo

=E(Y1,) Regular Monotone Convergence Theorem again

This proves the result. |

Theorem 9.3. Conditional Fatou’s Lemma: Suppose {X,},.y is a sequence of non-

negative integrable random variables such that liminf X, is integrable.
n—oQ

Then E [lim inf X, | G| < liminfE[X,, | G].
—00

n—oo n
Proof. Call Y,, = Igf {Xk}. Then from how Y, is constructed, {Y,},.y is a non-negative

monotone sequence almost surely converging to Y = liminf X,,. Since Y € L!(IP) by assump-
n—oo

tion of the proof, we can use the Conditional Monotone Convergence Theorem (Theorem 9.2,
Page 87) to say that E[Y,,|G] ~ E[Y|G]. Further, since Y,, < X} for all £ > n and since con-
ditional expectations respect dominance (Lemma 9.0.2, Page 83), E[Y,, | G] < ’glf E [ X | G]

and thus lim E[Y, | G] < liminfE[X,, | G]. Taken together, we see that lim E[Y, | G] =
n—oo n— o0 n—oo
E |liminf X,, | G| <liminfE [X,, | G] as desired. [
n—oo n—oo

Theorem 9.4. Conditional Dominated Convergence Theorem: Suppose X,, — X
almost surely, and there exists an integrable random variable Y such that |X,| <Y for all
n. Then E[X, | G] = E[X | G].

Proof. Since | X, | <Y, (Y + X,,) and (Y — X,,) are non-negative random variables. Since
lim X, = X, liminf(Y + X,,) =Y 4+ X and liminf(Y — X,,) = Y — X, both of which are in-
oo n—oo

n—oo n—

tegrable as X, is bounded by an integrable Y. Applying the Conditional Fatou Lemma (Theo-
rem 9.3, Page 87), wesee E[(Y + X) | G] =E [lim inf(Y + X,,) | g] <liminfE[(Y + X,,) | G]
n—oo n—o0

87



9.2 Theorems And Examples Flaherty, 88

and E[(Y — X)|G] = E [lim inf(Y — X,,) | g] < lminfE[(Y — X,) | G]. Conditional ex-
n—oo n—oo
pectations are linear, so we have E[Y | G] + E[X |G] < E[Y | G] + liminf [X,, | G] and
n—oo
EY |G+ E[-X|G] < E[Y |G|+ liminf [-X,, | G]. Canceling terms we are left with
n— o0

E[X |G| <liminfE[X, | §] and E[-X | G] < liminf E [-X | G] or equivalently E [X | G] >
n—oo n—oo

limsupE [X,, | G]. Combining these results, we see that limsupE[X,, | G] < E[X |G] <

liminf E [X,, | G] and so can say lim E[X, | G| = E[X | G] as desired. [
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9.3 Problems

Problem 9.1) In this exercise you will prove the completeness of the LP spaces
for 1 < p < oo (completeness also holds if p = oo, and the proof is essentially
the same).

a. Recall the triangle inequality for L? norms (also called Minkowski’s in-
equality), [|X + Y|, < || X]|lp + ||Y||,- Now extend this fact to infinite sums:

H S Xi‘ < % || X:llp, provided S X; is well-defined with probability
P
one.

Since since |X;[? is non-negative, we can apply the regular Fatou Lemma (Theorem 5.6,
Page 43). Observe:

|3
=1

p

Regular Fatou’s Lemma (Theorem 5.6, Page 43)

p

Regular Minkowski’s Inequality (Theorem 4.5, Page 35)

b. Now consider any sequence of LP random variables (Xn)'n,21 that is Cauchy
with respect to the LP norm. Show that there exists a subsequence (Xnk)k21
such that || X, , — X, |, < 27F.

Since {X,},cy is Cauchy with respect to the LP-metric, for any € > 0, there is some
N € N such that for all m,n > N, ||X,, — X,||, < e. So we can make a particular choice of
¢ = 27% and know that there will be some N, € N that fulfills the aforementioned property.
So with this Ny in mind, we can choose any increasing sequence {n}, -, and reach our
result.
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c. Using the extended triangle inequality in part a, show that the following
quantity has finite L? norm: |X,, |+ > /2, |Xy,,,, — Xy,| < co. Conclude that
this sum is finite with probability one.

Observe:
H |Xn1| + Z |)(n,€Jrl — Xnk| < | Xn, || + Z HXnk“ — X, By part a
i=1 P P=1 P
< || Xn, || + Z 2k By part b
Pk=1
P

d. It follows from part c that the following sum converges with probability one:
Xoo = Xp, + > 51 (Xnpyy — Xny,)- (On the zero-probability event that the right-
hand side does not converge, define X,, however you like, say X,, = 0.) Show
that || X — Xy, ||[p = 0 as k — oo.

Notice that the sum is telescoping. So we have X = X,,, + > (an+1 — an) and then
=k

HXOO - ch = HXW + (Z (X”j+1 - Xn])> - X”k < Z HX"J'+1 - X”j < Z 27k
P j=k P =k P =k

and this upperbound gives the result as k — oo (the second to last inequality follows from
part a while the last inequality follows from part b).

e. Finally, return to the original sequence and show that || X. — X,]||, — 0 as
n — oo.

Let ¢ > 0 be given. By the Cauchy assumption, there is a N € N such that for all
n,m > N, |||[, < /2. Then choose a k large enough such that || Xo — X, ||, < /2 (this
is enabled by part b). Then for all m > N we have that [|Xo — Xullp < [ Xeo — Xnpllp +
| X0, — Xullp = § + 5§ = € by the regular triangle inequality and we have proved our result.
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Problem 9.2) Given a o-algebra G and a random variable X such that E(X?) < oo,
define the conditional variance as V(X | G] =E[(X —E[X | g)? | gl.

a. Verify that conditional variance—Ilike regular variance—can be written as a

difference: V[X |G| =E[X? | G] —E[X | G]°.

We have:

VIX|G=E[(X-E[X|G])*|]] Definition
=E[X?-2XE[X |G]+E[X |G]| 7] Expanding
=E[X*|G] -E2XE[X |G] |G|+ E[E[X | G1% | G] Conditional Linearity
=E[X?|G] -2E[X |G]E[X |G| +E[X | G]” Pull out what’s known
=E[X?|G] -E[X|g]

b. Verify the law of total variance, that V(X) =E(V[X | G]) + V(E[X | G]).

For the first term, we have:

E(VX|G)=E(E[X*|G] -E[X|G]) From part a
=E(E[X?|G]) —E(E[X |G)°) Regular linearity
=E(X*)-E(E[X | Q]Z) Expectation of conditional expectation

For the second term, we have:
VE[X |G)=E(E[X | 9}2) —~E(E[X |G])® Variance computing formula
=E(E[X | 9}2) —E(X)? Expectation of conditional expectation
Adding the two, we get cancellation and so are left with E(X?) — E(X)? = V(X).

c. Suppose Y = E[X | §] and E(Y?) = E(X?). Prove that X ' Y.

From substitution:

E(Y?) = E(X?) By assumption
E (E[X | 9]2) E(X?) Y =[X |G| by assumption
E(E[X*|G])-E(E[X | g]Q) 0 Tower Property
E(E[X*|G]-E[X| 9]2) 0 Linearity of expectations
E(VIX|G)=0 Conditional variance computing formula

EE[X-E[X| G’ | G])=0 Definition of conditional variance

E((X-E[X]|g]) ) 0 Tower property
E(X-Y))=0 Substitution
X=Y
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10 Martingales

10.1 Definitions

Definition 10.1. Filtration: A sequence of sigma-algebras such that Fy € F; C ....
Informally, more and more information becomes available over time.

Example 10.1: Label the sides of a coin H or T. Our sample space is ), the set of all
possible outcomes of the coin flipped infinitely many times. We can create a filtration based
on the outcomes of a flip. We start with the trivial sigma-algebra Fy = {0, 2}. Our first non-
trivial sigma-algebra is F; = {0, 2, Ay, Ar} where Ay denotes any sequence of flips whose
first result is a head; Ay = {w = wjwy -+ € Qs : wy = H}. Our third sigma-algebra must
include F; along with the four sets determined by a second flip (Agm, Agr, AT, Anm), but
also more than that. By the definition of sigma-algebra, we also need closure of compliments,
so must have, e.g. A% g =Arr UArg UAyr = Ar U Ayp. Further, we need closure under
unions. The previous sentence showed that unions between sets entirely determined by the
first coin flip and sets determined by the first two coin flips have already been included due
to the compliment rule. We then only have to consider unions between sets determined by
the first two flips. There are four such sets, each of whom is disjoint from only two others
(non-disjoint sets, e.g. Agy and Ay have a union that is already included). In total, we
see the following:

[ ] -FO p— {@,Q}
o 71 ={0,Q,An, Az} = Fo U{An, Ar}
@,Q7AH7AT7
o T — Anw, Anr, Are, Arr,
, =

Ag]H? AgTa AgHa AgT?
Apg U Arr, Agg U Arg, Apr U Arp, Apr U Arg

This trend continues, and since for every n € NU {0}, F,, C F,, 11, we have a filtration.
Note further that |F,| = 2%".

Definition 10.2. Stochastic Process: A sequence of random variables {X,},  defined
on the same probability space (€2, F,P).

Example 10.2: Any iid sequence of random variables is a stochastic process.

Definition 10.3. Adapted Stochastic Process: A stochastic process {X,},y in which
there is a filtration {F,}, .y such that, for every n, X, is F,-measurable. Frequently, the
“natural filtration” is used: F, = (X1, Xa, ..., Xp_1).

Example 10.3: The “value” of a poker player’s hand is an adapted stochastic process. The
process is random, since the true value of the hand is only revealed once all the community
cards are revealed. The process is adapted, since more and more information is revealed
over time— after being initially dealt cards, the player only knows how his opponents bet
and his own cards, while after the flop the player has an additional round of betting and
three community cards worth of information, etc.
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Definition 10.4. Martingale: An adapted stochastic process {M,}, . € L'(P) is a mar-
tingale if for every n, M, = E[M,1|F,]. So informally, a martingale is a process in which
your best guess for the future is the present value.

If instead of equality, we have M, < E[M,1|F,] for all n, we say that M, is a sub-
martingale. In the same way, if M,, > E [M,,1|F,], we say that M, is a supermartingale.

Ezxample 10.4: (Integer) Random Walk. Take {X;}, .y to be ii.d, random variables with
P(X; =1) = P(X; = —1) = L. If S, is the “position” after n steps, then S, = > X;
i=1

2

is a martingale with respect to F,, = o(Xy,...,X,). To prove this, we just check the
criteria. First, S,, € L'(IP) since |S,| < n and so E(|S,|) < co. Next, S, is F,-measurable
since JF,, is generated by S,. Finally, we check the martingale property and observe that
E[Sii1 | Fu] = E[S, + Xpi1 | Fo]l = E[Sy | Fu] + E[Xyi1 | Fn) by linearity of conditional
expectations (Lemma 9.0.1, Page 83). Since S, is F,, measurable, the first term is S,
(Lemma 9.0.4, Page 84). Since X, is independent of F,,, the second term is E(X, 1) =
1)+ 2(=1)=0. SO E[S,y1 | Fu] = S, as desired.

2 2

Non-example 10.1: Quadratic Martingale. In the same set up as the integer random
walk (Example 10.4, Page 93), S2 doesn’t yield a martingale. In fact, E[S2,, | F,] =
E (S + Xpi1)? | Fo) = E[S2 | Fo] 4 2E[S, Xoga | Ful + E[X2,, | Fu] by linearity of con-
ditional expectations (Lemma 9.0.1, Page 83). The first term is J,-measurable, so is S?
(Lemma 9.0.4, Page 84). The second term becomes 25, [X,+1 | F,] after pulling out what
is known (Lemma 9.0.4, Page 84), and, since X,,;; is independent of F,,, the second terms
is 25, (X,41) = 25,(0) = 0 (Example 9.7, Page 82). The third term is independent of
Frys0is E(X2,)=1(as P(X2=1)=1). SoE[S2,, | F] = S2+1> 5% {Su},en is a
submartingale.

Example 10.5: Quadratic Martingale Correction. What if we make the correction M, =
S2—n? Then E M,y | Fo] =E[S2,, — (n+1) | F,| =E[S2,, | Fu] —E[(n+1) | F,] by
conditional linearity. Then from the quadratic martingale non-example (Non-example 10.1,
Page 93), we have S + 1 — (n + 1) = 5% — n which is precisely M,,.

93



10.1 Definitions Flaherty, 94

Definition 10.5. Stopping Time: A random variable T : Q@ — N U {0} U {0} is a
stopping time with respect to the filtration {F,}, . if {T'=n} € F, for all n. In other
words, T is a stopping time if given only the information up to time n, you know if T" has
happened or not (and the inclusion of oo allows for the possibility it never happens). Note
that {T'=n} € F, if and only if {T'<n} € F,. The equivalence is seen since assuming

{T'=n} € F,, {T <n} = |J{T =i}, and each element in the union is in F;, which is
=1

a subset of F, since it’s a filtration. For the other direction, assuming {T' < n} € F,,

{T=n}={T<n}n{T'>(n—-1)} and {T <n} e F, while {T' > (n—1)} € F,_1 C F,.

Ezample 10.6: One-Sided Boundary. For X; % X with P(X = =£1) = 3, consider the

simple random walk S, = > X, and the random variable 7' = inf {n > 1,5, =1} (in
i=1

plain English, the first time the random walk “hits” 1). Is T a stopping time? Since

T=inf{n>1:95,=1}, {T <n}= U {Si=1} and each element in the union is in F; C

Fn. So T is a valid stopping tlme ThlS example shows that the martingale property
E(M,) = E(M,) for all deterministic n does not hold for random 7', i.e. E(M,) # E(Mr)
for any random 7" in general. Indeed, Sy = 1 by definition, so E(St) =1 # 0 = E(Sp) = 0.

Non-example 10.2: In the same setting as the simple random walk in Example 10.6, the
last time reaching a value x is not a stopping time. We have T'=sup{n > 1: S, = z} and
[e.e]
so{T'=n} ={S,=x}N ( N {S: # x}) (i.e. you hit z at time n and do not hit x at
i=n+1
any time after n). Since each element in the second intersection contains information that
is not in F,, (as i > n), T is not a stopping time.

Example 10.7: In the same setting as the simple random Walk in Example 10.6, the second

time reaching a value z is a stopping time. We have T = inf {n >: S, =} and T®
inf {n>TW +1:5, =x}. Then {T® < n} = U U {S; = S; =z} and each set in the
i=1 j=it+1

union is in JF,, since ,j < n.

Non-example 10.3: In the same setting as the simple random walk in Example 10.6, the time
before the first hitting time is not a stopping time. We have T' = inf{n >1:5,,; =z}
and so {T'=n} ={S1 =2} € Foy1 ¢ Fo.

Non-example 10.4: In the same setting as the simple random walk in Example 10.6, the first
time to reach the maximum is not a stopping time. Intuitively, knowing you’ve reached the

maximum requires information about the future. We have T'=inf {n > 1:sup5; = Sn}
i>1

Jj=n+1

n—1 00
and so {T'=n} = { NS < Sn} N { N S;< Sn}, and since j > n, each event in the
i=1

second intersection is in F; ¢ F,.
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Definition 10.6. Uniformly Integrable: A family of random variables {X;}, ; is uni-
formly integrable if hm sup E (| X;]Lqx,101) = 0.

M—o0 iel
Non-example 10.5: Escape To Vertical Infinity (Example 5.2, Page 38), X, (w) = nﬂ{w<l}.

The martingale converges almost surely, but not in L! (even though martingales preserve

), <
% Z,_ M and so for all fixed M,
1, +>M

s‘u?E (|Xi|]l{‘Xi‘2M}) = 1, which doesn’t go to zero in the limit as M grows large. The
1€

expectation). In particular, E (| X;|L{x,>m3) = {

issue is that the main contribution to E(X,) is coming from larger and larger values that
the limiting random variable doesn’t actually see.

Ezxample 10.8: Domination By Integrable Random Variable. If | X;| <Y for all i € I and if
E(]Y]) < oo, then the random variables are uniformly integrable. To see this, observe that

supE (1 X[ 1x,501) < E(Y|Lysm) MZ* 0 by the Dominated Convergence Theorem
iel
(Theorem 5.8, Page 43), since |Y'|Ljy|>um 2% 0 and since P (Y:ﬂ_{|y|2M} < Y) =1 for all M.

Example 10.9: Integrable Identically Distributed Family. If each X; is identically dis-
tributed to a random variable X, and if E(|X|) < oo, then there is uniform integrability:

s‘u?E (|Xi|]l{\Xi\2M}) =E (|X|IL{‘X|2M}) M2 () where the first equality comes from the
1€

identical distribution and the limit comes from the Dominated Convergence Theorem (The-
orem 5.8, Page 43) since | X|1|x|>m 2% 0 and since P (X]l{\)sz} < X) =1 for all M.

Ezample 10.10: 1f X € L*(P), then {E[X|G] : G C F} is uniformly integrable. Since X is
integrable, for any ¢ > 0, we can find a 6 > 0 such that for any A € F, E(|X[14) <
¢ whenever P(A) < § (Problem 5.8, Page 50). With this in mind, for any G C F,

E ([E[X[6] | Lsigizan) < E (E[IX]6] - Lepxigzmn) = E (XLgpyjeizan) first from
Conditional Jensen (Lemma 10.0.1, Page 96) and then from the defining property of con-
ditional expectation (Definition 9.6, Page 82). Label {E[|X||G] > M} as the event A.
Using Problem 5.8, if we can force P(A) = P(E[|X||G] > M) < ¢, then we will have
E (XIL{EHXHQ]ZM}) S g, i.e. for all g, E (}]E [X|Q] | . 1{\E[X|QHZM}) S g, and (since E(|X|) is
finite and since € > 0 was arbitrary), lim sup Sup E (|E[X|G]| - 1gpxigy=my) = 0. Observe

M—oo GCF

P(A) = P(E[|X||G] > M) < E(EHXE\ZQ]ZM)) — E(]'\f‘) first by Markov’s Inequality (Theo-
rem 4.1, Page 33) and then by the tower property (Lemma 9.0.5, Page 85). So, whenever
M > $E(|X]), we see our desired chain of inequalities.

Definition 10.7. Doob Martingale: Starting with a random variable X € L'(IP), define
X, = E[X | F,]. This definition creates a martingale since (first by definition and then
by the Tower Property (Lemma 9.0.5, Page 85)) E[X,41 | Fu] = E[E[X | Foua] | Fu] =
E[X | F.] = X,,. Further, by Example 10.10, the martingale is uniformly integrable.
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10.2 Theorems And Examples

Lemma 10.0.1. Conditional Jensen: If f : R — R is convex and if X, f(X) € L'(P),
then [ (E[X | ]) < E[f(X) | G

Proof. Let l,(x) denote the equation of the line tangent to f at a, evaluated at x. For
notational ease and for any fixed a € R, we can label m, = f’(a) (the derivative of f exists
since f is convex) and b, = f(x) — f'(z)a to write l,(x) = f(a) + f'(a)(z — a) = myx + by.

Since f is convex, f is the supremum of tangent lines; for any x in the domain of f
(codomain of X (w)), f(x) = supl,(z) (and thus f(x) > m,x + b, for all a € R).
a€R

Now call g(z) = supl,(z). We'd like to show that f(z) = g(z) for all z € R. Trivially
a€eQ

we have [ f(z) = sup za(x)] > {sup lo(z) = g(a:)} for any z € R. If z € Q, then f(z) = g(x)

a€R a€Q
since after choosing a = x, f(x) = l,(x) (the line tangent to f at  and f(x) agree at z, after

all), and then f(x) = l,(z) < suply(x) = g(z). Combined with the fact that f(x) > g(z)
acQ

for all z € R, this proves the claim that f(x) = g(z) for all z € Q. Now as f and g are
continuous (g is the supremum of linear functions, so is convex), and as they agree on a dense
subset of R, they agree on all of R:

f(z) =suply(x) = sup (mx + ba)} = [g(x) = suply(z) = sup (mgzx + by) (10.1)
a€R a€R a€eQ a€Q

Now for all a € Q, m, - E [X|G] + b, = E [m, - X + b,|G] by conditional linearity, and then
E [mg - X 4 b,|G] < E[f(x)|G] by Equation 10.1 (since f(x) = sup(myx + by) > m,z + by).
yeQ

Since this holds for any a € Q and since Q is countable (the countable intersection of
probability one events has probability one), we have:

P (supma B [X|G] + b, < IE[f(X)|Q]> 1 (10.2)
a€eQ

This means that (since f(z) = sup(m,x + b,) by Equation 10.1):

acQ
P (f (E[X|G]) <E[f(X)[F]) =1 (10.3)
In other words, f (E[X | G]) < E[f(X) | g] n
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Lemma 10.0.2. Convex Functions On Martingales: If M, is a martingale with respect
to Fpn, if f : R = R is convex, and if E(|f(M,)|) < oo for every n, then {f(M,)},cx
is a submartingale with regard to {F,}, .. Similarly if {M,},  is a submartingale with
respect to the sigma-algebras, and the f from the above is convex and non-decreasing, then
{f(M,)}, e is a submartingale as well.

Proof. We check the three properties. First, E(|f(M,)|) < oo by assumption. Next, since
M, is F,-measurable, f(M,) is F,-measurable. Finally, we check the defining martingale

property.

For the first case, we have that E [f(M,11) | Fn] > f (E[M,41 | Fu]) by the Conditional
Jensen Inequality (Lemma 10.0.1, Page 96), and f (E [M,,.41 | F,.]) = f(M,,) by the martingale
property of M,.

For the second case, we have that E [f(M,,41)|F.] > f (E[M,+1 | F,]) by the Conditional
Jensen Inequality (Lemma 10.0.1, Page 96). Since M,, < E[M,1|F,] by the submartingale
property of M, and since f is non-decreasing, f(M,) < f(E[M,.1|F,]). Combining the
two, we have E [f(M,41)|Fn] > f(E[M,t1 | Fo]) > f(M,) as desired. [

Lemma 10.0.3. Let X,, be a submartingale and let U/, 5 denote the number of “upcrossings”
of X, over [a,b], Upap) = #{(n, k) : Xy < a, Xoqr 2 0, Xpi1, .o, Xpgm1 € [a, 0]} If Uy yy is
finite for all rational a and b, then liminf X,, = lim sup X,,.

n—oo n—o00

Proof. We argue by contrapostive and so assume that liminf X,, # limsup X,,. By this

n—o0 n—oo

assumption, there are rationals a, b such that liminf X, < a < b < limsup X,, (the rationals
n—0o0 n—00

are dense in the reals). This in turn implies that X,, < a for infinitely many n and that
X,, > b for infinitely many n. Hence U, = oo. [ |

Lemma 10.0.4. Let X,, be a submartingale and let {/,; denote the number of “upcross-
ings” of X, over [a,b], Uiap) = # {(n, k) : X5, < a, Xy >0, Xy, ..., X1 € [a,0]}. Then
E(Up ) < oo for all a < b.

X, IfX,>a
a, fX,<a
convex and non-decreasing, and since {X,},.y is a submartingale, Lemma 10.0.2 says that
{f(Xn)} en = {Yat,ey is also a submartingale. By construction, we have the number of
upcrossings of (a,b) by {Y;,},cy is equal to the number of upcrossings of (a,b) by {X,}

Proof. Let Y, = { =a+ (X, —a)t. Since Y, = f(x) =a+ (x —a)" is

neN’

Now consider a game where we bet either $0 or $1 on the outcome of Y, ; (with a
profit of Y, ;1 — Y,). A risk-free betting strategy is the following: a. bet $1 per round if
Y, = a until Y, ., > b (if Y41 = a you lose nothing, and if Y, 1 # a, then you profit
(Yo41 — Y,) > 0) b. bet nothing until Y,, = a again. This strategy ensures that every full
upcrossing earns the bettor $(b—a), any “partial” upcrossing only helps the bettor, and any
sequence in which there is never even a partial upcrossing doesn’t lose any money. As such,
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(b—a)ljyy < total earnings = > H;(Y; — Y;_
i=1
round. Taking expectations:

E (Uap) <E((0— a)lia)

<E (f: Hi(Y; — Yi—1))
- E (,}H&imm — Ym))

i=1

<117£I_l>g)le <ZH (Y, —Y,_ 1))

< liminf E ( >
n—oo

= liminf E

n—o0
n—oo

< liminf E

n—oo

(Ya

< liminf E ((X. — (Xo—a)*")
(X
(

< hmlnfE | X \ + |a|)

< ]a\ —|—hm1anEl(]Xn])
n—o0

< Ja| + supE (|, ) < o0
neN

1) where H; € {0,1} is the bet size in the i}

Since b > a by assumption

By above explanation

The sum is non-negative

Fatou’s Lemma (Theorem 5.6, Page 43)

H; € {0,1}

The sum is telescoping

Since Y, is defined to be a + (X,, —a)*
Since (Xg —a)™ >0

Arithmetic

Linearity

Martingales are defined to be integrable

Theorem 10.1. Martingale Converge Theorem: If {X,}, _ is a submartingale and
supE(] X,|) < oo, then X, converges almost surely to a finite limit as n — oo.

Proof. From Lemma 10.0.4, E (U,;) < oo, and so P(U,, < 00) = 1. From Lemma 10.0.3,
this tells us that P(liminf X,, = limsup X,,) = 1, the limit exists almost surely.

n—o00 n—o00

Call X = lim X,,. We have that E(|X|) < hm 1anE(|X|) by Fatou’s Lemma (Theorem

n—o0

5.6, Page 43), which is strictly less than mﬁmty by assumption of the proof. So we see

]P(|X\ < 00) =1 as desired.
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Lemma 10.1.1. Stopped Process: If { X}, is a submartingale and 7" is a stopping time
with regard to the filtration {7}, .y, then {Xpan}, oy is a submartingale (called a stopped
process). As always, we can extend the above to supermartingales (by taking negatives) and
martingales (by invoking sub and super statements simultaneously).

Proof. We just check the three properties. First, we know that Xp,, is F,-measurable for
n n—1

allnas T An € {0,...,n} and 50 Xpp, = > Xiliran—iy = > Xilyr—ip + Xp1ir>ny. Every
i=0 i=0

summand in the first term is F; C F,,-measurable since i < n (for the X; factor) and since
{T =i} € F; with i <n by the stopping time property (for the Lyp—; factor). For the same
reason, the second term is JF,-measurable.

Second, we show that every random variable in the stochastic process is integrable. Since

n
the indicators are at most 1, we know that E (| X7a.]) < > E (]X;]) < oo as each term in the
i=0

finite sum is finite (because {X,}, oy is a submartingale), and thus the entire sum is.

Finally, we check the submartingale property. We have:

E [Xra@+n)|Fa] =E Z Xilyr—iy + Xpp1l{rsny | Fn| Definition

1=0

= Z Xilyr=iy + Lirsn) E [ X1 | ] Pull out what’s known (Lemma 9.0.4, Page 84)

i=0

> Z Xilyr—py + Lypony X Submartingale property of X,
i=0

= Xr7pn Definition
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Theorem 10.2. Optional Stopping Theorem, Version 1: If { X, } . is a submartingale
and T is a bounded stopping time, then E(X,) < E(X7).

Proof. By the Stopped Process Lemma (Lemma 10.1.1, Page 99) and the fact that the
expectation of a submartingale is nondecreasing in n, we have E(Xra,) > E(X7p0) = E(X))
for all n € N. Since T is bounded by assumption of the proof, there is a large enough n

such that 7" < n almost surely, in which case X7, = Xr almost surely and thus E(Xr) =
E(X7an) > E(Xp). [ |

Theorem 10.3. Optional Stopping Theorem, Version 2: If {X,}, _ is a submartin-
gale, if T is a stopping time with E(7) < oo, and if there exists a constant ¢ such that

E[| X1 — Xo| | Fu] < ¢ for all n >0, then E(Xo) < E(Xr).

Proof. By the Stopped Process Lemma (Lemma 10.1.1, Page 99), E(X()=E (Xrno) <E(X71nn)
for all n. Since E(T") < oo, P(T < o0) = 1 (of course, the converse is not true) and thus
Xran — Xp almost surely as n — oo. If we can conclude that E(X7x,) — E(Xr), then the
desired conclusion will follow from the fact that E(Xy) < E(X7an).

It suffices to exhibit an integrable random variable that dominates Xr,, (Theorem 5.8,

n—1
Page 43). To this end, observe that Xpn, = Xo + > (Xit1 — X;) I{zss by telescoping
i=1

properties and so | Xpa,| < [ Xo| + Z | Xiy1 — Xi|L{r>i. The right hand side doesn’t depend

on n, so it can serve as the dornmatmg random variable. We just need to show it’s integrable.

We have that:

Z E (| Xis1 — X Lirsiy)

=0

= ZE [ Xis1 — Xi|Lr=iy | Fi])  Tower Property (Lemma 9.0.5, Page 85)

= ZE (1{T>i}E [ X1 — Xl | ]-",]) Since L7y is Fi-measurable

=0
o
< E (17s; - ¢) Assumption of proof
i=0
o0
< CZ P(T > i) Linearity and expectation of indicator
i=0
=cE(T) < ¢ Integrating the tail, and assumption of proof
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Lemma 10.3.1. Uniform Integrability Implies L' Bounded: If {X;}._; is uniformly
integrable, then there exists a finite constant C' such that E(|X;|) < C for all ¢ € I. Note
that the converse is false though— uniform integrability is stronger than L!-boundedness
(Non-example 10.5, Page 95).

Proof. Since {X;},., is uniformly integrable, A}gnoo S;E?E (|X;|2¢x,>0r3) = 0 and so we can
choose M large enough so that slu?E (|Xi|Lgxy=my) < 1. Then for every i € I, E(|X;]) =
E (1L an) +E (il L) < M+ 1 =
Lemma 10.3.2. Conditions for Uniform Integrability Based On Functions: If f is

a non-negative function such that lim @ = oo and if E(f(|X;]) < C < oo forall i € I,

T—00

then {X;},.; is uniformly integrable.

Proof. Let € > 0 be given. Since ﬁ — 00, there exists a M, whereby f o) < ¢ whenever
x > My. Then for all M > My, Whenever 1X;| > M, o < e and thus |X;] < F(1Xi])e

XD
(since f is non-negative). Now E (|X;| - Lx,>my) < E(f(|1Xile)) = cE (f(|Xi])) < Ce, and,
taking supremums, we reach our conclusion (since ¢ is arbitrarily small). [

Ezxample 10.11: Consider f(x) = |z|P with p > 1. Then being bounded in L? (for p > 1)
implies uniform integrability.

Lemma 10.3.3. Fatou Lemma (Version 2): If X, 5 X then E(|X|) <liminf E(|X,|).
n—oo

Proof. Start by taking a subsequence {n;},.y such that liminfE(|X,|) = klim E (| Xn,|)-
n—oo — 00

Since X, convergences in probability to X, this { X,,, } .y subsequence has a further {Xnkl }
leN

subsequence that converges almost surely to X (Theorem 5.9, Page 44).

Then []E (|1X])=E (lilrn inf [ X, \)} < li}n inf E <|X”kl \) from the regular Fatou Lemma

—00 —00
(Theorem 5.6, Page 43). And, since E(]X,,|) was constructed to converge to a limit, any
further subsequence convergences to the same limit; lilrn inf E <|Xnkl |> = llim E <|Xnkl |> =
—00 —00

klim E (| Xn,|)- Finally, we originally choose {n;}, .y so that liminf E(|X,|) = klim E (| X))
— 00 n—oo —00

Connecting the inequalities, we reach our desired conclusion. |

Lemma 10.3.4. Continuous Mapping Lemma: If X, 5 X and f : R — R is continuous,
then f(X,) 2 f(X).

Proof. Let {n},.y be any subsequence. Then there exists a further subsequence {ng, },.y
such that X, “% X (Theorem 5.9, Page 44). Then by the continuity of f, f( k) =2 F(X).

Due to the “only if” direction from 5.9, we reach our conclusion f(X,,) 5y (X) |
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Theorem 10.4. Vitali Convergence Theorem: Suppose E(]X,|) < oo and X, 5 X,
then the following are equivalent:

a) {Xn},en is uniformly integrable

(¢) E(|Xa]) = E(IX]) < o0
(d) limsup E(].X,[) < E(|X]) < o0

n—o0

(a)

b) X, 2 x
)
)

Proof. First assume {X,}, .y is uniformly integrable. We want to show that X, — X in

L', ie. that E(]X, — X|) = 0. Solet £ > 0 be given and choose M large enough such
-M, fX<-M

that supE (| X,|1gx,>m}) < 5. Then define the function g(X) = ¢ M, if X >M

" X, else

which is bounded and continuous. We utilize the triangle inequality and linearity to say

E (|X, — X[) < E(|X, — g(X,)]) +E (l9(X,) — 9(X)]) +E (|9(X) — X1}, and aim to provide

bounds on each of the three terms in the sum.

For the first term, we know that X, differs from ¢(X,) only when |X,| > M. Then
|Xn — g(Xn)‘ = !Xn — g(Xn)‘ - Lyxa=my- I X, > M (X, is a large positive value), then
9(X,) = M and so | X,, — g(X,,)| = | X, — M| = | X,| — M. If instead X,, < —M (in any other
case the indicator is zero), then ¢g(X,,)=—M and so | X,,—g(X,,)|=|X,+M| = | X,,| - M as well.
So we can write E (| X, — ¢(X,)|) = E ((IXa] = M) Lyx,203) < E (I XalLyx,zm3) < 5.

For the second term, since X, — X and g is continuous, we have 9(Xy) 5 g(X) by
the Continuous Mapping Lemma (Lemma 10.3.4, Page 101). Since g is also bounded, we
have ¢(X,) — ¢(X) in L' (Theorem 5.8, Page 43), i.e. E(]g(X,) — g(X)|) — 0, and so
E (lg(X,) —g(X)|) < § as n grows large.

For the third term, since the mapping X — (X — ¢g(X)) is continuous, we also have

(X, — 9(Xn)) 5 (X —g(X)) by the Continuous Mapping Lemma (Lemma 10.3.4, Page

101). Then from the second version of Fatou’s Lemma (Lemma 10.3.3, Page 101), we can

bound the expectation as E (| X — ¢(X)|) < liminf E (] X,, — g(X,,)|), which is at most £ by
n—oo

bound we had on the first sum. All together, the terms tell us that limsup E (|.X,, — X|) < ¢

n—oo
and we have proved that uniform integrability implies L' convergence.

Second, assume X,, — X in L'. We want to show that E(|X,|) — E(|X]|) < oo, ie.
lim E(|X,|) = E(]X]), i.e. lim E(]X,|) — E(]X]|) =0 and so lim E(|X,|—|X]|) =0. By
n—o0 n—oo n—oo

1
the reverse triangle inequality and by the assumption that X, X , We see:

lim E (|X,| — |X|) < lim E (|| X,| - |X]|) < lim E (|X, — X|) =0
n—oo n—oo n—oo

102



10.2 Theorems And Examples Flaherty, 103

Third, assume lim E(|X,,|)=E(]X|)<oco. We want to show that limsup E(|X,,|) < E(|X]).
n—oo

n—oo
Since the limit converges, the limsup converges to the same value and thus we reach our

conclusion trivially.

Finally, assume limsup E(|.X,|) < E(|X|) < co. We want to show {X,,}, . is uniformly

n—o0

integrable, i.e. that ]Vl[im supE (|Xi\]l{|Xi|2M}) = 0. So let € > 0 be given and choose M > 1
0 4el

large enough such that E (|X|1yx>m—13) <e.

X, o< X<M-1
Define a function g(X) = ¢ (M —1)(M — X), f M —1< X <M. We want to go
0, it X > M

from g(M — 1) = (M — 1) to g(M) = 0 linearly— the slope is —(M — 1), so the equation is
(M=) =M-1)(X-(M-1)=M-1)[1 - (X=(M-1))]=(M-1)(M - X))

Since X, - X and g is continuous, we have g (1.X%]) 5 g(X) by the Continuous Mapping
Lemma (Lemma 10.3.4, Page 101). Note that | X, |1y x, < only disagrees with ¢(]X,|) when
| Xn| € (M —1,M) (where g(|X,|) < [ Xu|Lgx,<m}). Also note that | X|Lyx|<r—1); only
disagrees with g(|X|) when |X| € (M — 1, M) (where g(|X|) > [X|1{x|<(m-1)}). Then
observe:

lim supE<|Xn|ll{|Xn‘2M}) = lim SupE<|Xn| - |Xn|]]-{|Xn|<M}> Properties of indicator
n—oo

n—sc0
= limsup]E(|Xn\) —lim sup]E(|Xn\]l{|Xn|<M}) Linearity
n—00 n—00
< lim SupE<|Xn|> - liniinfE<|Xn|ll{|Xn‘<M}) Arithmetic
3o n—s00
< E(|X]) - hggleQXnmﬂXnKM}) Assumption
< E(|X]|) — h}ggle(qu”D) First note above
<E(|X]) - E(ligicgfgﬂXnD) Fatou Lemma (Theorem 5.6)
< E(|X]) - E(g(|X|)) Continuous Mapping Lemma
< E(|X]|) — E<|X|]l{‘X|<(M_1)}) Second note above
= E<IX|]1{‘X|2(M,1)}> Linearity and properties of indicator
<e How we choose M

Therefore, for all large n (say n > ng), E (|Xn|]1{\xn\zM}) <e. Foreach i € {1,...,n0}
(since E(|X;|) < oo) there exists a M; large enough such that E(|.X;|1x,>m3) < €. By
setting M’ = max {M,..., M,,}, we have E (| X,|1{x,>m) < 2 for all n, and thus
sup E(| X, | Lijx,>m1y) < €. So A}gn su?E (|XZ-|IL{|XZ.|2M}) < e. Since € was arbitrarily small,

n i€

we reach our result. [ ]
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Lemma 10.4.1. Conditional Expectation Is A Contraction On L? Space: For any
p > 1 and any o-algebra G C F, we have X, L3 X implies E (X, | G LBE (X | gl

Proof. We see that E(\E X, | G]-E[X | G] V’) - E(|E (X, — X | g] |”) by Conditional Lin-
earity (Lemma 9.0.1, Page 83), which is at most E (IE | X, — X["| G > by Conditional Jensen.
And by the tower property (Lemma 9.0.5, Page 85), E(E [ X, — X" | Q’]) =E(|X, — X",

which goes to zero by assumption of the proof.

Note that by replacing X, with a general random variable Y in the above gives the
inequality ||E[X|G] —E[Y|G] ||, < || X — Y]|,; conditional expectation is a contraction on L?
space. |

Theorem 10.5. Equivalencies For Doob Margingales And Uniform Integrability:

For a submartingale { X}, ., the following are equivalent:

(a) {Xn}, ey is uniformly integrable
(b) X,, — X almost surely and in L?
(c) X,, » X in L!

Moreover, if any (and hence all) of the conditions are true, and if we call X, = lim X,,,
n—oo

then E[X, | F,] > X, (for submartingales). The interpretation of this is that uniform
integrability is the condition that allows martingales to hold even “at time oo”.

Proof. We know that a = b since uniformly integrable random variables are bounded in
L' (Lemma 10.3.1, Page 101), and so, since sup E(|X,|) < oo definitionally, we can apply

the Martingale Convergence Theorem (Theorem 10.1, Page 98) to say X,, —» X. This
almost sure (and hence probabilistic) convergence allows us to invoke the equivalence between
uniform integrability and L! convergence in the Vitali Convergence Theorem (Theorem 10.4,
Page 102).

We also have b = ¢ trivially, and to show ¢ = a, we again appeal to the equivalence
between uniform integrability and L' convergence in the Vitali Convergence Theorem (The-
orem 10.4, Page 102) after recalling that L' convergence implies convergence in probability
(Theorem 5.3, Page 41).

All that’s left to show is that X, QISS' E [X | Fin for any fixed m. We have X, L X,

which implies E [X,, | F,] LE [Xoo | Fin) since conditional expectation is a contraction on
L' space (Lemma 10.4.1, Page 104). Recall that L' convergence implies convergence in
probability (Theorem 5.3, Page 41), and that any sequence converging in probability has a
subsequence converging almost surely (Theorem 5.9, Page 44). So there is a subsequence
{ni}ren (With ny > m for every k) such that E[X,, | Fn] =5 E[Xo | Fm). By the sub-
martingale property, X,, < E[X,, | Fu]. This inequality holds for all k, and taking limits
on both sides shows X, < kh_}rgo]E (X, | Fn) = E[ X | Fin- [
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Theorem 10.6. Levy’s Upward Theorem: If 7, " F, ie. F =0 (U ]—"n), then for
any X € L'(P), we have E [X | F,] —» E[X | F] almost surely and in L',
Proof. Define the Doob Martingale X,, = E[X | F,]. We have already shown that Doob

a.s., L1

Martingales are uniformly integrable and thus X,, = X (Theorem 10.5, Page 104). So
all that remains to be shown is that X, = E[X | Fy), i.e. that X, fulfills the conditions
of conditional expectations.

For the first condition, each X, is F.-measurable and X,, — X, almost surely. Since
almost sure limits of F,-measurable random variables are F,-measurable, X, is indeed
Foo-measurable.

n

E(X14) = E(Xx14). For now, consider any B € F,. From how X, was defined, X,, =
E[X|F,] and so E(X1p) = E(X,1g). From Theorem 10.5, X, = E[X,|F,| and then
E(X,1p) = E(Xx1lg). So we've shown that the conditional expectation criteria hold for
|U,, F and now we try to extend this conclusion to the sigma-algebra generated by this set.

For the second condition, We eventually want to show that for any A € o (U fn),

First, see that |J, F, is a pi-system (Definition 3.11, Page 22), since the sequence of
sigma-algebras is a filtration and thus for any two elements in the union, both elements are
in a shared sigma-algebra and so their intersection is too.

Next, consider the set £L = {C € F, : E(X1¢) = E(X,1¢)}. We claim £ is a lambda-
system (Definition 3.12, Page 22) and so want to show it is closed under compliment and
countable disjoint union. Take C' € £. Then C° € L too since E(X1¢e) = E(XLlee) (see
that E(X) = E(X1¢) —E(X1¢e) and E(Xo) = E(Xoole) —E(Xolee), and then E(X 1) =
E(X«1¢) by assumption, and E(X) = E(X,) since nh_}rgo E(X,) = E(X) where each n on

the left gives E(X,,) = E(E[X|F,]) = E(X) via substitution and the tower property). Now
let C1,Cs, ... be a countable sequence of disjoint events in £. Then [HC; € L as well since

E(Xl{tdn C}) = ;E(Xllci) = ;]E(Xoollci) = E(Xooll{wn C}) So L is a lambda-system.

We now have that (JF, is a pi-system contained in £ (this is clear as if C' € |JF,,

C € F,, for some m and then E(X1¢) = E(X.1¢)). By the Pi-Lambda Theorem (Theorem
3.6, Page 27), this proves o(|JF,) is a sigma-algebra contained in £. From how £ was

defined, this proves our result. |
Corollary 10.6.1. Levy’s 0-1 Law: Given a filtration {F,}, .y, define 7o = o (U ]—"n).
Then for any A € Foo, E[14 | Fo] 23 14.

Proof. Apply Levy’s Upward Theorem (Theorem 10.6, Page 105) to X = 1 4. Since A € F,
the indicator 1, is Fo,-measurable, hence E[14 | Fool = La. [
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Corollary 10.6.2. Kolmogorov’s 0-1 Law: If X;, X5, ... are independent andif A € T =
N =0 (Xni1, Xnio,...), then P(A) € {0,1}.

n>1

Proof. Let F,, = o(Xi,...,X,) and so Foo = 0(X1,Xo,...). Since T € Fpo, A € Fuuo
and Levy’s 0-1 Law (Corollary 10.6.1, Page 105) says that lim E[14|F,] © 14. On the

n—oo

other hand, for all n, A € o(X,, 11, Xn12,...) implies that A is independent of F,, (by the
independence of the X;’s) and so E [14]F,] = E(14) = P(A). So P(A) == 14 which forces
P(A) €{0,1}. |

Theorem 10.7. Doob’s Maximal Inequality: Let {X;}, ., be a submartingale, and define

E(Xnlyyx
X = ?ax }X;r. Then for any t > 0, P (X} >t) < ( {tx”zt}> < E(f’ﬂ.
1€40,...,n

Note that it is trivially the case that P(X; > 1) = E (Lix;>) < E <¥1{Xﬁbzt}> and so
the advantage here is replacing X with X,,. We get simultaneous control over X;", ..., X"

using an expectation involving only X,,. The logic behind this is that a submartingale “acts
enough like” an increasing sequence for the result to hold.

Proof. Consider the stopping time 7' = inf { > 1 : X; > t}. Then by the Optional Stopping
Theorem (Theorem 10.2, Page 100), E (X7pr,) < E(X,). Furthermore, if X < ¢, then
TAn=mnandsoE (IL{X;Q}XTM) =E (]l{X;;<t}Xn)- Now subtracting the second from the
first:

E(X7an) — E (Lixz<Xran) <E(Xn) — E (Lix:<nXn) (10.4)
JE<XW(1 —lix:<ry)) <E(X,(1 - ILX;;Q)) (10.5)
E (Xranlixgzn) < B (XnLixgn) (10.6)
Now we proceed to the main proof
P(X;>t) =E (I{x:>) Probability of an indicator is expectation of event
<E(t ' Xranlixisy) Xp>t = T<n = X=Xy = Xpan >t
< %E (XTAn]lx;;zt> Linearity
1

IN

-E (XnLix:>e) Inequality 10.6

Ezample 10.12: Let S, = > X; where the X;’s are independent, mean zero, with finite
i=1
variance. Then {S,},y is a martingale and {|S,|},cy is a submartingale. Doob’s Maximal

Inequality implies that P ( {max }|S,»| > t) < w. Using the fact that {S2} is a sub-

1€{0,...,nn

martingale we obtain the inequality P ( {max }]Si| > t) =P < {max }SZ-2 > t2) §E(t§*2l).
1€{0,...,nn 1€{0,...,nn

Compare this to Chebyshev’s Inequality (Theorem 4.2, Page 33), P(|S,| > t) = E(t§3> (since

E(]S.]) = 0), which only gives control over a particular n instead of the maximum n.
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Lemma 10.7.1. Integrating The Tail: For any non-negative random variable and any
p >0, E(XP) = [["ptr'P(X > t)dt.

Proof For any positive real number z, a? = [ pt?~tdt = [ pt'~ 1,5y dt. Then E (X?) =
E (J;° ptr M sy dt) = [ ptrE (]l{X>t}) dt = [ pt*~'P (X > t) dt by Fubini’s Theorem
(Theorem 7?7, Page ?77). [

Theorem 10.8. LP Maximal Inequality: Let {X;}, .,
P
Xy = gnax }X Then for any p > 1, E(X;?) < <p%1) E (| X,[?). This moves us from
1€40,...,n
bounding tails (Theorem 10.7, Page 106) to bounding moments, and says that if {X,},  is
bounded in LP, then the maximal process is also bounded in LP.

be a submartingale, and define

Proof. We have (where ¢ is chosen so that % + é =1):

E(X?) = / pt! TP (X > t) dt Integrating the tail (Lemma 10.7.1, Page 107)
0

< / ptr°E (|X Lixesey) di Doob’s Maximal (Theorem 10.7, Page 106)

=E <|X | / ptP 2 dt) Fubini’s Theorem as integrand is positive
Xn
= E<|Xn| (Ltp_l) ) Integration
b= 1 0
= LlE (|1 X, X271 Arithmetic and linearity
p —_—
1
< LI]E (\Xn|p)% E( (X:‘Lp’l)q> " Holder’s Inequality (Theorem 4.4, Page 34)
p j—
p 1 1 1 1
:—]E anp]EX:qu AS——i——:l:}p: p_lq
L () E O S (-1
Then dividing both sides by E (X,";p)%, we get | (X))~ . < HE (X, |7’)P and by how we
chose ¢, E (X;p)% < HE (|Xn|p)%. Raising everything to the p'™ power, we get our desired
result, E (X*7) < (p%l)pxaqxnvo) m
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Theorem 10.9. Martingale LP? Convergence Theorem: Let {X,}, .y be a martingale

or non-negative submartingale such that supE (| X,|’) < oo and p > 1. Then X, 1 X
n>1

Proof. Since the random variable is L? bounded, they are L' bounded by Jensen’s Inequality
(Theorem 4.3, Page 33). Then by the Martingale Convergence Theorem (Theorem 10.1, Page
98), L' bounded random variables X,, converge almost surely to X.

We need to show that E (|X,, — X«|") — 0. By the Dominated Convergence Theorem
(Theorem 5.8, Page 43), it suffices to find some Y € L'(IP) such that | X, — X |’ < Y.

P
Observe that | X, — X" < (| X,] + [ Xx])’ < (2 Sup|X,~|) (since Xoo = lim X,,). Call
i>0 n—r00

this value value Y. By construction, for any n, P(|X, — Xoo|? < Y) = 1. All that remains to
be shown is that E(|Y]) < oo, i.e. that 27- E((sup ]Xi\)p) and thus E((sup |Xi\)7’> is finite.
i>0

>0

By the assumption that {X,},  is either a martingale or non-negative submartingale,
we have that {|X,|}, .y is a submartingale. So by the L? Maximal Inequality (Theorem

P
10.8, Page 107), E (( max |X,|) ) < (ﬁ)pEﬂXnV’). After sending n — oo, we see

1€{0,...,n}

p
E ((sup |XZ|) ) < sup (L)pE (|X,|P) < oo by assumption of the proof. [
n>0

1
i>0 P
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Theorem 10.10. Doob’s Decomposition Theorem: Let {X,},., be an integrable pro-
cess adapted to the filtration {F,},,. Then there exist processes { M}, and (A;,),>0 such
that all of the following properties hold:

1. X, =M, + A, for all n

2. {M,},5, is a martingale with respect to (F,)n>0

3. {An}n21 is a predictable process, meaning A, is JF,,_i-measurable

4. AO =0

Proof. 1f such properties are to hold, then we know A, — A,_1 = E[X,, | F,—1] — X,,—1 since

E[X, | Fu1]l =E[M,+ A, | Fn_1] X, = M, + A, for every n
=E[M, | Fooa]l + E[A, | Fr] Conditional linearity
=E[M, | Fo1] + A, {AN},en 1s a predictable process
=M, 1+ A, {M,},cn is @ martingale
= (X1 —A4,1) + A, X, = M, + A, for every n

Using the property that Ag = 0, we would have A; = E[X; | Fy] — Xo. Then recursively
AQ—(]E [Xl ’ fg] — Xo) =E [XQ | .Fl] —Xl, etc. Compactly, An = Z (E [Xk | Fk—l] — Xk—l)-

k=1
Using the desired condition that X,, = M,, + A,,, we can use the A, sequence to solve for M,,.

We have M1 = Xl—(E [Xl | ]:0] — Xo), M2 = XQ_((E [Xl | .F()] —X()) + (E [XQ | .Fl] —Xl))7
etc. Compactly, M,, = Xo+ > (Xy — E [ Xy | Fr-1]).
k=1

By how we constructed {A,}, .y and {M,}, ., Xn = M, + A, and Ay = 0. Since each A,
is the sum of F,,_;-measurable random variables by assumption, A, is also F,,_;-measurable.
By conditional linearity, E [M, 1 | F,.] = E[X,q1 | Fn] — E[Any1 | Fn] which simplifies to
E [Xni1 | Fu] — Angr (since A, is F,_j-measurable), and further to (4,41 — A, + X,) —
Ay = X, — Ay = M, (from how A, was defined). This shows {M,}, . is martingale and
thus we’ve proved existence and are done. |
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10.3 Problems

Problem 10.1) Consider the Galton-Watson Process. Start with one individual,
who reproduces asexually. They person has a random number of off-spring X,
each of whom also has a random number of off-spring independently from the
same distribution of X. First, model this process as a martingale, then, say what
happens over the long-run when E(X) < 1 and when E(X) = 1.

Let Z, be a random variable denotm% the number of indiv1duals in the n'" generation
(and Zp = 1). Then Lpi1 = X( + X -+ Xé) where X ) denotes the number of
offspring of the i*" individual in the n' generatlon

iid

We assume the sequence {XZ-(")} ~ X take on non-negative integer values. If we

i>1,n>0
call = E(X) and set Fy, = 0(Zo, . .., Zy), then E[Z,iy | Fo] = E [Xf”’ Fot X ]—"n].
Intuitively, this should give us Z, 1, however there are a random number of summands, so
we have check this is the case. So let Ay = {Z,, = k} € F,,. Notice that:

E[Zn1 | Fol1a, =E[(Z +1)1Ak|f]

() 10 )

k
:ZE[X(” |]—"]ILAk
Zn

= ZE(Xi)ILAk = Znptla,

=1

So E[Z,1 | Fu] = Zup “on Ag”. To see that the identity is always true, we sum over
oo

k: 1 = > 14, since Z, takes exactly one value. Then the above calcuation shows that
k=0

E[Zp 1| Fn) = Z 14, E[Z, 1| Fa] = Z 1, Znpt = Zppu and we can “normalize” to get a

martingale by deﬁnmg M, = u"Z,. ThlS is indeed a martingale since E [M,,; | F,] =
p YR I(Z, 0 | F = w2, = M,,.

The Martingale Convergence Theorem (Theorem 10.1, Page 98) implies that M,, = p="Z,
goes to My, < oo as n grows large. What happens in each of our three cases for u?

In the subcritical case, when p < 1, we see that hm Zyn = lim p"M = 0. Since Z,

TL*)OO
is an integer, this limit means that 7, = 0 for all large n, meaning extinction occurs with

probability 1.

In the critical case, when p = 1, we have lim Z,, = M., < oo. There are two options. In
n—oo

the first, where P(X = 1) = 1, we get the boring result that there will never be extinction.
When the distribution of X is non-trivial, it must be the case that P(X = 0) > 0 since
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E(X) = 1. In such a scenario, M, = 0 almost surely (i.e. there must be extinction). To
see this, since lim Z, = M., and since Z, is integer-valued, we know that 7, = M, for

n—o0
all large n. Then {M, =k} = |J {Z, =k for all n > N}. But when k is non-negative,
N=1

we have P(Z, = k for alln > N) = ]P(Xl(n) + Xz(n) +- 4 X,E,n) =k VYn > N). As there is
independence across generations, we can write [] P(X{™ + X{” 4+ .. + X = k). Since

n>N
P(X = 0) > 0, this is maximally [ 1—P(X™ + X{ +...+ X" =0). And finally since
n>N
the distribution is i.i.d. across individuals, the above is equal to [] (1 — P(X = 0)¥) = 0.
n>N

Hence P(My, = k) =0 for all £ > 1, and so M, = 0 almost surely.

111



10.3 Problems Flaherty, 112

Problem 10.2) Most stopping times of interest aren’t bounded. But any stopping

time T can be mapped to abounded stopping time by considering T' A n. The

trouble is that E(Xra,) may not converge to E(Xr) as n — oo ...Consider
n

simple random walk S, = Y X; with P(X; = £1) = 1 and the one-sided

=1
boundary T' = inf{n € N: S,, = —1}. Is T bounded? Is T finite? Compute
the expected value of T'. What do these answers tell you about the convergence
properties of Sta,7

T is clearly not bounded since P(T" > n) > P(S, = --- =5, = 1) > 0 (this is just one of
many ways to avoid hitting —1 in the first n steps).

On the other hand, T is finite. The Stopped Process Lemma (Lemma 10.1.1, Page 99)
says that {Span},cy is @ martingale (since {5, }, oy is a martingale). And we can decompose
the expectation to E (|Stan|) = E(Sf,,) + E(S7,,). Since Sra, is greater than —1 by
the definition of T, E(S},,) < E(Sta, + 1). For the same reason Sy, is at most 1. So
E (|Stan]) S E(Stan + 1) +1 =24 E(Sy) = 2 by the martingale property. In other words,
the supremum of S7,, is bounded and we can invoke the Martingale Convergence Theorem
(Theorem 10.1, Page 98) to say that Sr,, converges almost surely as n — oo. The only way
this can happen is if the walk hits zero at some time, since otherwise the value of Spn, will
forever change (after all, if n < T', then Spa(ni1) = Snt1 # Sp = Sran). But what is E(T')?

The second condition of version 2 of the Optional Stopping Theorem (Theorem 10.3, Page
100) is trivially satisfied: |S,+1 — S,| = 1 for all n. So if E(T") < oo, then we could use the
theorem to say E(S7) = E(Sp) = 0. But Sr = —1 and so we must have E(T") = occ.

This logic says that although the hitting time is almost surely finite, its expected value is

infinite. What we are really identifying is that even though S7,, — S = —1 almost surely
as n — 0o, we do not have Sy, — —1 in L.
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Problem 10.3) Let {X,}, -, be a submartingale with respect to the filtration
{F.},,>o- Prove the following properties. Note: if {X,}, 5, is supermartingale,
then all the inequalities in a-c go the other direction, and X + would be replaced
by X~ in d. If {X,}, -, is a martingale, then all the inequalities in a-c are
equalities, and either X:L_r or X =~ could be used in d.

a. X, < E[X,+k|F,] almost surely for any n,k > 0.

Let n € N be given. In the case k = 1, we have the definition of a submartingale. So
assume k > 1. As {‘Fn}neN is a filtration, F,, C F,1x_1 € Frik, and we can invoke the Tower
Property to write E [ X4k | Fo] = E[E [ X1k | Fatk-1] | Fn]. By the submartingale property,
E [Xosk | Frosk—1] > Xuik—1. Then since conditional expectations respect dominance, we
have E [ X,k | Fu] = E[E [Xoik | Frsk—1] | Ful = E[Xpik—1 | Fu]. Inducting on k, we have
E [Xyik-1 | Fn] > X, and have reached our conclusion.

b. E(X,) < E(X,4x) for any n,k > 0

First recall that for any random variable X and any sub sigma-algebra G in the probability
space (2, F, P), E[X | G] exists. By definition of conditional expectation, for any A € G, we
must have E (X1,4) =E(E[X | G]14) and thus E(X) = E (E[X | G]) after taking A = ).

Applying this to the problem at hand, we have X,, < E[X,, 4 | F.] by part a. Then since
expectations respect dominance, we further have E (X,,) < E (E [X,,4« | F»]). Using the above
note, the right side simplifies to E(X,,;) and we’ve reached our conclusion E(X,,) < E(X,1x).

c. E(X;) <E(X) —E(Xo) for any n > 0.

From part b, E(X,) < E(X,) for any n € N. We can decompose the X, into it’s
positive and negative parts, E(Xy) < E(X;) — E(X, ). Rearranging, we get our result:
E(X,) < E(X]) — E(Xo).

d. sup,>oE (|Xn]) < oo if and only if sup,,5¢E(X;) < co. This shows that the
only way for (X,)n>0 to not be bounded in L' is for (X),>0 to not be bounded
in L'. This is because submartingales grow in the positive direction on average.

First assume sup E(|X,,|) < co. We can decompose |X,,| into X,7 + X~ in order to write
n>0
supE(X;F + X)) < oo. In particular, we must have sup E(X;") < oo by the integrability
n>0 n>0
condition of martingales.

Next assume sup {E(X,")} < oo. By the above decomposition, E(|X,,|) = E(X,))+E(X,,).
n>0

By part ¢, we can write E(|X,|) < 2E(X;]) — E(X,). Since E(X;") < oo by the assumption,

E(Xy) < oo. Then using the inequality above, sup E(|.X,,|) < oo. This proves the equivalence.
n>0
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Problem 10.4) The previous exercise concluded with the statement “submartin-
gales grow in the positive direction on average”. This exercise will show that
“on average” does not necessarily mean “in reality”. Construct a submartingale
{Sn}hen such that E(S,) — oo but S,, — —oo almost surely as n — oo.

Consider the random variable X,, where P(X,, = —1) = 1 - %, P(X, = n®) = &5,
and S, = > X;. Intuitively, as n grows large there is a high probability of taking small
i=1

negative values, but a small probability of taking huge positive values. First, observe this a
sub-martingale:

E[Spi1 | Fu] =E[S, + X1 | Fi How S,, was constructed, and X,, ;1 independent
=EI[S, | Fu] + E[X,41 | Fu] Linearity of conditional expectation
=S, +E[ X1 | F S,, is Fp-measurable
=S, +E(X,1) X1 is independent of F,
> Sp Since E(X,,) > 0 for all n
Next, observe that S, *¥ —co. We have i P(X, =n3) = i 5 = % < 00, so by the
n=1 n=1

first Borel-Cantelli Lemma, P(X,, = n? i.o.)_: 0 and thus P(X, = —1 i.0.) = 1; we are
adding only finitely many positive terms, but adding infinitely many negative terms.

Finally, observe that E(S,) =¥ co. For each n € N, E(X,,) = (n— 1)+ & < n— 1. Taking
n to infinity, we get our result.

Problem 10.5) Let S,, = ), X; be a simple random walk on Z started at
So = 0. Find a sequence of constants {a,n}n>1 such that M,, = Sf‘l —a,S,, defines
a martingale (with respect to F,, = o (Xo,..., X,))-

For M, to be a martingale, we’d need to see the following:

M, =E [S’?L+1 — Qny1Sn11 | Fn]
=E [(Sy + Xu11)® = @np1 (Sn + Xop1) | Fl How S,, defined
=E [S + 352 X1 + 35, X7 + X011 — any1Sn — @1 Xpy1 | Fn] Expanding
=52+ 35, — @ps 1S,

Where the last step comes from conditional linearity, pulling out F,-measurable random
variables, the realization that X2, is the constant 1, the realization that X3, = X, 1, and
the independence of X,,11 and F,, (so E[X, 41 | Fo] = E(X,41) = 0).

We want M,, = S2 —a,S,, = S + 385, — 115, or equivalently 35,, — a, 415, + @, S, =0

and thus a, 1 = a, + 3. So all that’s left is to specify a;, which we can see from inspection
isa; =0.
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Problem 10.6) Let S and T be stopping times with respect to a filtration (F,)»>o.
Show that both S AT = min{S,T} and S VT = max{S,T} are also stopping
times.

By the definition of stopping time, the event that {S < n} and the event that {T" < n}
are both in F,, for every n € N.

The minimum of S and Tis {S AT < n} = {S < n}U{T < n}. Since sigma algebras are
closed under unions, and since {S < n} and {T" < n} are both in F,, so too is their union.
So S AT is a stopping time.

The maximum of S and T'is {SVT <n} = {S <n} N{T <n}. Since sigma algebras
are closed under intersections, and since {S < n} and {T" < n} are both in F,,, so too is their
intersection. So SV T is a stopping time.

Problem 10.7) In this exercise you will prove a generalization of the first optional
stopping theorem. Let S and T be bounded stopping times such that P(S < T) =
1, and let {X,}, -, be a submartingale (all with respect to the same filtration
{F.},,>0)- Show that E(Xs) < E(Xr).

Since T' is bounded, for large enough n we have T' =T A n. Then observe:

n

Xr— Xg = Z (X7 — X;) Lis=y Indicator only positive once
i=0
:Z<XT/\n_XT/\i)1{S:i} [ =8]<T<n = [i=8]=TAi
i=0
E(Xr) —E(Xs) = ZE (Xran — X1ai) Lis=iy) Taking expectations
i=0

= Z]E (E [(XTA” — Xrni) Lgs=q | .E]) Tower property
i=0

= ZE (IL{S:Z-}]E [(X7an — X1ai) | ]—"Z]) S is stopping time

=0

Since X7 is a submartingale, the conditional expectation in the sum must be greater than
zero. But then every term in the sum must be greater than zero. So E(X7) > E(Xg).
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Problem 10.8) The two-sided boundary is often called gambler’s ruin. Let {S,}, oy
be symmetric simple random walk on 7Z started at So = 0. Let T be the first
time the walk hits either —a or b; that is, T =inf{n >1:S,, € {—a,b}}.

a. Argue that T is a stopping time.

Since T' = inf{n >1:5, € {—a,b}}, T = U {S; € {—a,b}}. Since each event in the
i=1

union is in F,, (as @ < n), so too is the union itself.

b. Obtain an expression for E(T'An). Use this expression and monotone conver-
gence to prove E(T) < oco.

Each step on the walk has variance V(X;) = E(X?) — E(X;)? = E(1) — 0 = 1. Then since
V(S,) =V (Z Xi) = > V(X;) = > 1=n by independence, a quadratic martingale comes
i=1 i=1

=1

in the form M, = S2 —V(S,) = 5% —n.

Since T' A n is a bounded stopping time, we can apply the first version of the Optimal
Stopping Theorem to say 0 = E(Mrp,) = E(S%,,) —E(T' An). We know 0 < T An /T
almost surely, so by the Monotone Convergence Theorem, lim E(7 An) = E(T). Similarly,

n—o0

as Sran = Sr and as Spa, < max{b,|a|} (since S, € [a,b] until T), we know by the
Dominated Convergence Theorem that lim E(S%,,) = E(S%). So as n grows large we have
n—oo

0 =E(S2) — E(T) or equivalently E(T) = E(S2).

c. Determine the probability that the walk reaches b before —a. That is, calculate

From part b, we know E(T") < oo. Where {F,}, .y is any filtration the random walk is
adapted to, there is a bound on E[|S,, 11 — S,| | Fu] (namely anything greater than 1), just
by the construction of S,,. So we can apply the second version of the Optional Stopping
Theorem to say 0 = E(Sp) = E(St).

By the definition of stopping time, St € {—a,b}. By the definition of expectation for
simple random variables, E(Sr) = bP(Sy = b) — a (1l — P(Sr =b)). Rearranging, we get
E(Sr)+a=P(Sr=05)(a+0b) and so P(Syr =b) = %. Plugging in the value from the
above paragraph, we get the result P(Sy = b) = et

d. Combine parts b and c to calculate E(T).

From part b, E(T) = E(S%). Using part ¢, E(S%) = a*P(S7 = a) + V’P(Sr = b) =

a ab(a+b
a2(;25) + B2 (5%) = e — ab.

116



10.3 Problems Flaherty, 117

Problem 10.9) We saw that convergence in probability plus uniform integrability
implies convergence of expectations. Perhaps surprisingly, it does not imply con-
vergence of conditional expectations. This exercise provides a counterexample.
Let Y1,Ys2,... and Z,, Z5,... be independent random variables such that

1 with probability 1/n, __ |n with probability 1/n,

0 with probability 1 —1/n, " 10 with probability 1 — 1/n.
Set X,, = Y,Z, and G = o(Y1,Y>,...). Show that X,, converges almost surely
as n — oo, and {X,},~; is uniformly integrable, and yet E [X,, | G] does not
converge almost surely.

Y, =

Consider >  P(X,, # 0). Since X,, =Y, Z, and Y,, is independent of X,,, P(X,, # 0) =
n=1
P(Y, =1)P(Z,=mn). So Y. P(X,, #0) =P, =1)P(Z,=n) =>_ %% > # < 00. By
n=1 =1 i=1
the first Borel-Cantelli Lemma, P(X,, # 0 i.0.) =0. So X,, 3 0.

Now consider E(|X,,|). Since X,, =Y, Z, and Y,, and Z,, are both positive, we can drop
the absolute value and write E(|X,,|) = E(Y,,Z,) = E(Y,)-E(Z,) = -1 = X by independence.

So lim E(|X,[) = lim E(1) = 0 and thus X, 2 0.
n—o0 n—oo

Since X,, converges both in LP and almost surely, it is uniformly integrable. We aim to
show that E [X,, | G] does not converge. We can write:

E[X, |G =E[Y,.Z, | d] How X, defined
=Y, E[Z,|J] Y,, is G-measurable
=Y, E(Z,) Z, is independent of G = o(Y1,Ya, .. .)
—Y,
By how Y, was defined, we can write Y P(Y, = 1) = > % = oo. Further, we can
n=1 n=1
write Z P(Y, =0) = Z 1 — 2 = oo. So since the Y;’s are independent, by the second

Borel- Cantelh Lemma, ]P(Y =1 i.o.) =P(Y, =0 io0.) =1 ThusY, = E[X, |G| does
not converge.

Problem 10.10) Suppose that F,, * F,, and X, ¥ X. Prove that E (X | Fnl %
E[X | Fool-

As n — oo, we have:

< |EX, | Fo] —E[X | Fl + IE[X | Fu] —E[X | Fool|li Triangle Inequality
<|E[Xy | Fo] —E[X [ Fu] ]l +0 Levy’s Upward Theorem
<0 L? Contraction
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Problem 10.11) Let S,, = ) X;, where {X;}, . are independent with E (X;) =0
1=1

and | X;| < K for all . Prove the following complement to Kolmogorov’s maximal

inequality: P ( max |S;| < t) < (ggj;z for all t > 0.

ie{1,...,n}

Consider the martingale M,, = S2—V(S,,) and the stopping time 7' = inf {7 > 1: |S;| > ¢}.
It is clear that the event { max |9;| < t} ={T > n}.

i€{l,...,n}
By the Optimal Stopping Theorem and how X; was defined:
0 = E(Mo) = E(Mrn) = E(STpn — V(Su)ran)
We can write this with indicators as follows:
E( (S7an = V(Su)ran) Lirzny) +E( (S7an = V(Su)ran) Lirsny)

By the definition of T, |S7| < (t + K). Since V(S,,) > 0, by independence and the fact
that the expectation of an indicator is the probability of the event, we have:

E((SZn, — V(Sn)ran) Lir<ny) < (t+ K)?P(T < n)

On the event {T" > n}, |S,| <t and so S? < t?. Then again by independence and the
fact that the expectation of an indicator is the probability of the event, we have:

E( (S7nn — V(Su)ran) Lr<ny) < (8 = V(S,)) P(T > n)
Combining the two, we can write:

<(t+EK)’P(T <n)+ (£ = V(S,) P(T > n)
<(t+K)*(1-P(T >n))+ (= V(S,)) P(T > n)

And so with some manipulation get our desired result:

P(T >n) [(t+K)* - (£ = V(S,))] < (t+ K)*
(t+ K)? B (t+ K)? (t+ K)?
(t+K)?2—124+V(S,) 2tK+K2+V(S,) ~— V(S,)

IA

P(T >n) <
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Problem 10.12) Give an explicit example that shows how L? bounded submartin-
gales do not necessarily converge in LP.

Let {M,},cy be a simple random walk starting at zero with stopping time determined
by the first time one hits —1. Since M, is minimally —1, {M, + 1}, is non-negative.
We know that X,, = —y/M,, + 1 defines a submartingale since x — —/z is convex. Then
E(X2)=E(M,+1)=E(My)+1=1 (sois L? bounded). But X? does not converge in L?
since M, + 1 %% 0 while E(X?2) = 1 for all n.

Problem 10.13) Give an explicit example that shows why there is no L' maximal
inequality.

Let {S,},cy be a simple random walk starting at 0 with stopping time determined by
the first time one hits —1. Then M,, = Srn, defines a martingale with E (|M,,|) = E (M,") +

E(M) = (E(Mn) + E(M;)) Y E(M;) = E(M,) + 2E(M;). Since M, is a martingale,

E(M,) = E(M) = 0. Since S, is at least —1, 2E(M;) < 2. So E(|M,|) <2 ({My},ey is
bounded in L1).

Even so, M = sup M,; / MY = sup M;. By the Monotone Convergence Theorem
1€4{0,...,n} 120

(Theorem 5.7, Page 43), E(M;;) / E(MZ). And by Problem 10.8, P (MZ, > b) = 55 for

any integer b > 0. We know that MZ > b if and only if the simple random walk reaches b

before —1. So E (M%) = > P(MZ, >b) = Y 75 = 0o ({MZ%},cy is not bounded in L').
b=1 b=1
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11 Glossary

Adapted Stochastic Process: A stochastic process { X}, .y in which there is a filtration
{Fn},en such that, for every n, X,, is F,-measurable. Frequently, the “natural filtration” is
used: F,, = o(X1, Xo, ..., X,_1). (Definition 10.3, Page 92)

Algebra: A collection of sets A from a non-empty set €2 is an algebra provided A is closed
under finite unions and complements. That is, A is an algebra if whenever A, As,..., A, € A

we have |J 4; € A and AY € A. (Definition 1.9, Page 5).
i=1

Bayes’ Theorem: We can express the conditional probability of A given B in terms of the
conditional probability of B given A, which may be useful for computations. In particular,

P(ANB P(BNA P(A)P(B|A iy
P(A|B) = 5550 = Tim = S0, (Definition 9.2, Page 81)

Characteristic Function: The characteristic function of a random variable X is given by
ox(t) = E(e"™). (Definition 8.1, Page 68).

Coefficient Of Determination: Where p(X,Y) is the correlation between random vari-
ables X and Y, the coefficient of determination is simply it’s square; r* = p(X,Y)?. Note
r? € [0,1]. (Definition 3.10, Page 22).

Conditional Expectation (Given A Sigma-Algebra): The conditional expectation of
an integrable random variable X given a sigma-algebra G C F is a random variable Y =
E [X | G] satisfying:

1. Y is G-measurable (i.e. for all Be B(R), Y }(B)={we Q:Y(w) € B} CG)
2. Forall Ae G, E(X14) =E(Y1,)

An interpretation is that Y is the “best guess” for X given the information provided by G.
See that conditional expectation on a sigma-algebra is a random variable, but conditional
expectation on an event is a number. Note that conditioning on another random variable is
really conditioning on the sigma-algebra generated by the random variable. (Definition 9.6,
Page 82)

Conditional Expectation (Given An Event): The conditional expectation of an inte-
grable random variable X given an event A € F is the number E[X|A] = E](P)ag‘). (Definition
9.5, Page 82)

Conditional Probability: The conditional probability of an event A given an event B is

P(A|B) = IPI(;E;?). Intuitively, we first restrict our sample space to outcomes from (2 that are

in B, then within this restricted space, we consider the parts of A that can actually occur
(namely A N B), before dividing by P(B) to ensure that the probabilities in B sum to 1.
(Definition 9.1, Page 81)
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Convergence (Almost Surely): A sequence of random variables X, converges almost
surely to a random variable X, denoted X,, =% X, if P(lim X, = X) = 1. To be precise,
n—oo

this is saying X,, —> X if P <{w €Q: lim X, (w) = X(w)}) = 1.
n—oo
(Definition 5.2, Page 38).

Convergence (in Distribution; Weak Convergence): A sequence of random variables
X, converges in distribution to a random variable X, denoted X, 4 X ,if lim Fy, (z) =
Fx(x) for all points « where the CDF (Theorem 1.3, Page 7) Fx is continuous. nKrolo equivalent
definition is that X, & X provided lim E(f(X,)) = E(f(X)) for all bounded and continuous
f:R — R. (Definition 5.4, Page 3971).%OO

Convergence (in LP): A sequence of random variables X,, converges in L? to X, denoted
X, 5 X, if X € LP(P) and lim || X, — X[, = 0 (Definition 4.6, Page 32). When dealing
with p = 1, we may say “X, g;noserges in mean to X”. When dealing with p = 2, we may
say “X,, converges in mean-square to X”. (Definition 5.3, Page 38).

Convergence (In Probability): A sequence of random variables X,, converges in proba-
bility to a random variable X, if for any ¢ > 0, lim P(|X,, — X| < ¢) = 1. We denote this
n—oo

X, = X. To be precise, X, — X if lim P ({w € Q: | X,(w) — X(w)| < £}) = 1.
n—oo
(Definition 5.1, Page 38).

Convergence (Vaguely): A sequence of random variables converges vaguely if their distri-
bution functions F,, converges to a monotone, right-continuous function F': R — [0, 1], at all
continuity points ¢ of F'. Note that F' need not be a valid Cumulative Distribution Function
(it’s missing the condition that nhjEO F(z,) =1, for example). (Definition 5.5, Page 39).
Convex: A function whose second derivative is everywhere positive. Equivalently, a function
f R — R such that for all ¢t € [0,1] and for all z,y € R, we have f(tz + (1 —t)y) <
tf(z)+ (1 —t)f(y).(Definition 4.1, Page 32).

Covariance: The covariance of random variables X and Y is Cov(X,Y) = E(XY) —
E(X)E(Y) =E [(X —E(X))(Y —E(Y))]. Thisis a generalization of variance, since V(X) =
Cov(X, X). When the covariance is zero, we say the random variables are uncorrelated.
(Definition 3.8, Page 21).

Correlation: The correlation coefficient between random variables X and Y is p(X,Y) =

_Cov(X)Y) _ L
VXY Note p € [—1,1]. (Definition 3.9, Page 21).

Cumulative Density Function (CDF) Of A Random Variable: Where px is the law
(Definition 2.5, Page 13) of a random variable X, the CDF of X is the function Fx : R — [0, 1]
given by:
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Fx(z) = px ((—00,2]) = P(X ! (—00,2]) = P{w € Q: X(w) < 2}) = P(X < )

Here x (lowercase) denotes a generic element of the domain R, and X (uppercase) denotes
the random variable. So, we might have, e.g. X (w) = x. Compare this definition to Theorem
1.3, which doesn’t require a random variable. This is really the exact same idea, it just maps
the image of the random variable back to the sample space. (Definition 2.6, Page 15).

Distribution (Push-forward, Law) Of A Random Variable, pux: Let (2, F,P) be
a probability space and X : (2,F) — (R,B(R)) be a random variable. Then the law
of X (distributional measure, push-forward) is the function px : B(R) — [0, 1] given by
px(B) =P(XYB)) =P ({w e Q: X(w) € B}). (Definition 2.5, Page 13).

Doob Martingale: Starting with a random variable X € L'(P), define X,, = E[X | F,].
This definition creates a martingale since (first by definition and then by the Tower Property
(Lemma 9.0.5, Page 85)) E [ X, 11 | o] = E[E[X | Fosa] | Fu] = E[X | F,] = X,,. Further,
by Example 10.10, the martingale is uniformly integrable. (Definition 10.7, Page 95)

Event Space F: a c-algebra consisting of unions, intersections, and complements from
elements in the sample space. (Definition 1.3, Page 4).

Eventually Always: If (2, F,P) is a probability space and if {A;};°, is a sequence of
events in F, then eventually, A; will always occur if P <U () A; | = 1. Identifying union

n=11i>n
with “there exists” and intersection with “for all”, this is saying “there exists an n € N
such that for all ¢ > n, A; occurs with probability 17, which is the definition of lim inf;
P (U N Ai> =1 < P (liminf) =P ({we Q:we A for all large enough i}) = 1.
n=1i>n =0
While not universal notation, we may abbreviate this to P (A; e.a.) = 1.
(Definition 7.3, Page 59)

Expectation: The expectation of a random variable X, denoted E(X), obeys
1. Linearity: for all random variables X, Y and constants ¢, E(cX +Y) = cE(X) +E(Y).
2. Non-negativity: if P(X > 0) =1 then E(X) > 0.

We define the calculation for E in four stages in the theorem section below: first for sim-
ple random variables, then for bounded random variables, then for non-negative random
variables, then for general random variables. At each stage, we calculate the expectation
differently, and check that it agrees with previous calculations and meet the criteria for
expectations above. While this is a useful exercise, actually computing expectations is usu-
ally easier done with the previous two pieces of machinery (Lebesgue and Riemann-Stieljes
Integration). (Definition 3.6, Page 21).
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Filtration: Where () is a sample space, where T is some fixed positive number, and where
F; is a sigma-algebra for all ¢ € [0, T], then if F; C F, whenever s < t, we say the collection
Fi for t € [0, 7] is a filtration. Informally, more and more information becomes available over
time. (Definition 1.12, Page 6) and (Definition 10.1, Page 92)

Identically Distributed: Two random variables X and Y are identically distributed if
P(X € B) = P(Y € B) for all B € B(R). Equivalently, we can check if P(X; < t) =
P(X; < t) for all t € R (equivalent by taking B = (—o0,t]). Another equivalence is
E(f(X;)) = E(f(X1)) for all measurable f and all ¢ > 1 provided the expectations exist
(equivalent by using the push-forward formula in the above). (Definition 7.1, Page 59)

Independence (Of Events): A finite set of events Ay, Ay, ..., A, is mutually indepen-

dent if for all I C {1,...,n} we have P((N;c; 4i) = [ P(4;). We say Ay, As, ..., A, are
i€l

pairwise independent if for all i # j, P(A4; N A;) = P(A;)P(A4;). Note that mutual inde-

pendence implies pairwise independence, but not vise-versa. Infinite collection of events are

independent when any finite subset of the events are independent. (Definition 6.3, Page 52).

Independence (Of Random Variables): A finite collection of random variables { X}, is
independent if {o(X;)},.; (Definition 2.4, Page 13) is independent. For two random variables,
this is equivalent to checking that P(X < t;,Y <ty) = Fx(t1)Fy(t2).

(Definition 6.5, Page 52).

Independence (Of Sigma Algebras): A finite collection of sigma-algebras {F;},.; is
independent if for every A; € F;, {A;},.; is independent. Note that this specifically is not
saying anything about events within any one sigma-algebra (i.e the events within a sigma-
algebra may not be independent, see example), but rather is saying that selecting one event
from each sigma-algebra results in independence. (Definition 6.4, Page 52).

Infinitely Often: If (Q, F,P) is a probability space and if {A4;};2, is a sequence of events
in F, then A; occurs infinitely often if P { (| |J A; | = 1. Identifying intersection with “for

n=1i>n
all” and union with “there exists”, this is saying “for all n € N, there exists an ¢ > n such that

A; occurs with probability 1”7, which is precisely the definition of lim sup; P ( N u Ai> =

n=1i>n

1 < P (lim sup Ai) = P ({w € Q:w e A for infinitely many ¢}) = 1. We will often
1—00

abbreviate this to P (4; i.0.) = 1.(Definition 7.2, Page 59)

Inner Product: A function that is symmetric, bilinear, and positive definite. By bilinear,
we mean f(u+v,w) = f(u,w)+ f(v,w) and f(k-u,v) = k- f(u,v) for any scalar k and vectors
u, v, w. By symmetric we mean f(u,v) = f(v,u). By positive-definite we mean f(u,u) > 0

with equality holding only when w = 0. (Definition 9.3, Page 81)

A-system: A collection of sets £ from a non-empty set €2 is a lambda-system provided £
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is closed under compliment and countable disjoint union. That is, £ is a lambda-system if

whenever Ay, Ay, -+ € L are disjoint, we have [ A; € £ and A € L.
i=1
(Definition 3.12, Page 22).

Lebesgue Integral: Recall the definition of the Riemann Integral for a differentiable func-

tion f. Partition the domain a =z <21 < --- <21 <z, = b, let M = max f(z),
T 1S5STSTE
my = min  f(z), II = {xo,...,2,}, and ||II|| = max (z — zx_1), then see the Up-
TEp_1<x<7T) 1<k<n

per Riemann Sum (RSp+(f) = Y. My, - (vx — 2x_1) and Lower Riemann Sum (RSp-(f) =
k=1

n
> my - (xp — xK_1) converge to the same value as ||II|| goes to zero, namely f: f(z)dz. In-
k=1

tegrating in this way necessitates a natural ordering of the domain, which is a property that
(2, unlike R, may not have. For that reason, instead of partitioning the domain, we partition
the range in the Lebesgue Integral.

So assume for now that 0 < X (w) < oco. Partition the range of the random variable X

as 0 = yp < y1 < ... and as before denote IT = {yo,...,y,} and ||II|| = lrg?gcn(yk — Yp_1)-

Consider the event Ay = {w € Q:yp < X(w) < yri1}. Then the Lebesgue Integral is the
limit of the Lower Lebesgue Sum as ||I1|| goes to zero; ||1lTi”mO > ulP(Ag) = [, X (w) dP(w).
V=1

Define X (w) = max {X (w),0} and X~ (w) = max {—X(w), 0} (in the future we may ab-
breviate maximum as X V0). f P({w € Q: XT(w) =o0}) =P{w € Q: X~ (w) = c0}) =0,
then we say X is integrable and have [, X(w)dP(w) = [, XT(w) dP(w) — [, X~ (w) dP(w).
Ifboth P({w € Q: XT(w) =o0}) >0and P{w € Q : X~ (w) = o0}) > 0, then the Lebesgue
Integral is undefined. If only one of the positive or negative parts of X takes values of in-

finity with non-zero probability, then the Lebesgue Integral is either co (in the case where
0=PHwe: X (w)=00}) <P{weN: XT(w) =00}) or —co (in the other case).

We may be interested in integrating our random variable over a subset A of €2. In such
cases, we write [, X (w)dP(w) = [, 14(w)X (w) dP(w) where 14(w) is the indicator function
previously defined. Note that in all cases, we are integrating with respect to the probability
measure in question, since the same event may have different probabilities under different
measures. We define the expectation of X as it’s Lebesgue Integral, and write E(X) =
Jo X (w)dP(w). As we'll see below, this is just one of many ways to define expectation.
(Definition 3.1, Page 20).

L? Space: Fix a probability triple (€2, F,[P). The space of random variables with finite p-
norm is denoted LP(P) = {X : Q= R: | X], <oo}. Since p < ¢ = [ X, < [| X,
LP(P) D L%P) (the spaces get more exclusive as p grows). In that sense, the most
exclusive space is L. In the conditions for which X belong in L*, define || X||o =
inf {L > 0:P(|]X| <L) =1}. (Definition 4.7, Page 32).

124



Flaherty, 125

Martingale: An adapted stochastic process {M,}, € L'(P) is a martingale if for every
n, M, = E[M,1|F,]. So informally, a martingale is a process in which your best guess for
the future is the present value. If instead of equality, we have M, < E[M,|F,] for all n,
we say that M, is a submartingale. In the same way, if M,, > E[M,.|F,], we say that
M, is a supermartingale. (Definition 10.4, Page 93)

Measurable Function: A function X : 2 — S between measure spaces (€2, F) and (S,S)
is measurable if whenever B € S, X !(B) = {w € Q: X(w) € B} € F (the inverse image
of every measurable set is measurable). To emphasize that dependency on the respective
sigma-algebras and to be precise, we might say “X is (F,S) measurable” (or just “X is
F-measurable” when § is understood) and write X : (Q, F) — (S,S).

(Definition 2.1, Page 12).

Measurable Random Variable: A random variable X is G-measurable if every set in
o(X) is also in G; the information in G is sufficient to determine X. (Definition 9.4, Page 82)

Measurable Space (X,3): A set X (for example a sample space) along with a sigma-
algebra Y on the set. mydefdef.measurespace.

Measure p: In the context of a measure space (X, Y), a measure p : ¥ — R is a function
from the sigma-algebra to the real line such that () = 0 and p is countably additive, i.e.

for all disjoint Ay, Ag,--- € 3, u( ¥ Ai> = > u(A;) > 0. (Definition 1.5, Page 4)
i=1 i=1

Measure Space (X, X, pu): A measurable space along with a measure acting on the space.
(Definition 1.6, Page 4).

(Central) Moment: The n'" central moment of X is the value E [(X — E(X))"].
(Definition 4.3, Page 32).

(Raw) Moment: The n'" raw moment of a random variable X is the value E(X™).
(Definition 4.2, Page 32).

(Standard) Moment: The n' central moment of a random variable X is the value
E [(%) ] (where 0 = \/V(X), the standard deviation). (Definition 4.4, Page 32).

Moment Generating Function: The moment generating function (MGF) for a random
variable X is Mx(t) = E(e*X). The name of the function comes from the fact that the n'®

derivative of the MGF with respect to ¢, evaluated at 0, is the n'" raw moment.
(Definition 4.5, Page 32).

w-system: A collection of sets P from a non-empty set € is a pi-system provided P is closed
under finite intersection. That is, P is a pi-system if whenever A, Ay,... A, € P we have

() A; € P. (Definition 3.11, Page 22).

=1
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P-norm: The p norm of a random variable X is || X||, = E(|X|?) e, By Jensen’s Inequality
(Theorem 4.3, Page 33), if p < ¢, then || X||, < || X]||;- (Definition 4.6, Page 32).

Probability Measure P: A probability measure P : F — [0, 1] is a function on a sigma-
algebra F of the sample space € such that P(2) = 1 and P is countably additive, i.e. for

disjoint A;’s, ]P< 1+ AZ) = > IP(A4;). This is a specific case of a general measure. Note that
i=1 i=1
P(0) = 0 as a consequence of the other two conditions. (Definition 1.7, Page 4).

Probability Space (2, F,IP): A triple consisting of a sample space (2, an event space F,
and a probability measure P acting on the measurable space (€2, F).
(Definition 1.8, Page 5).

Quantile Function: Where Fy is a valid CDF for a random variable X, the quantile
function for Fx is the function Fy':[0,1] — R given by Fy'(u) = inf {t € R : Fx(t) > u}.
We capture the intuition behind the quantile function at the cost of precision (since Fx may
not have an inverse) when we use the notation Fi'. (Definition 2.7, Page 15).

Random Variable: A measurable function X : 2 — R between measure spaces (€2, F) and
(R,B(R)) (it is just a specific case of a measurable function where the codomain is fixed).
Note that the “randomness” from a random variable comes from the random experiment of
choosing the w € . Note further that to emphasize the fact that a random variable is a
function, we may often write X (w) (though X may be used for brevity).

(Definition 2.2, Page 12).

Random Variable (Bounded): A random variable X is bounded whenever there exists a
¢ € R such that for all w € 2, P(]X(w)| < ¢) = 1. (Definition 3.4, Page 21).

Random Variable (Non-negative): A random variable X is non-negative if for all w € Q,
P(X(w) > 0) = 1. (Definition 3.5, Page 21).

Random Variable (Simple): A random variable X is simple whenever there are only
finitely many values that X can take, that is, if there exists xy,xs,...,z, € R such that for
allw e Q, P(X(w) € {x1,29,...,2,}) = 1. (Definition 3.3, Page 21).

Random Vector: A measurable function (X, Xo,...,X,) : (", F") — (R*,B(R")). This
is essentially just n random variables placed next to each other. (Definition 2.3, Page 13).

Resolved Sets: Suppose we are given a measure space (€2, F) and an outcome w € w. The
sets in the event space F which are resolved by some level of information are those sets
A € F that either definitely contain or definitely don’t contain w. For this reason, it may be
helpful to informally think of sigma-algebras as “information”. (Definition 1.11, Page 6).

Riemann-Stieljes Integral: While the Lebesgue Integral allows for maximum generality
(for the purposes of these notes), to actually compute expectations, it often suffices to use
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the integrals more familiar to us. The expectation of a function g of any random variable X
with cumulative distribution function Fy is calculated as E(g(X)) = [~ g(z) dFx(z). By

definition, Fx(x) = ffoo fx(t)dt where fx is the density function of X. By the fundamental

theorem of calculus, this means dFx(z) = fx(z)dz. In particular, E(g(X)) = [~ g(z) -
fx(z)dx. (Definition 3.2, Page 21).

Sample Space : any set containing outcomes (e.g. heads/tails, 1:6, etc.).
(Definition 1.1, Page 4).

Semi-Algebra: A collection of sets S from a non-empty set € is a semi-algebra provided &
is closed under intersection and each compliment is some finite disjoint union from S (even
if the compliment is not in §). That is, S is a semi-algebra if whenever Ay, Ay, ... A, € S,
we have A;(A; € S and AS = | A;.(Definition 3.13, Page 22).
i=1

o-Algebra: A collection of sets F from a non-empty set {2 is a sigma-algebra provided F
is closed under countable union and complements. That is, F is a sigma-algebra if whenever
Ay, Ay, - € F we have |J A; € A and AY € F. (Definition 1.2, Page 4).

=1

o-Algebra (Generated By An Event A, o(A)): It is trivial to see that the intersection
of sigma algebras is itself a sigma-algebra. So we can define o(A) to be the intersection of all
sigma-algebras containing A (in this sense, it is the smallest such set). Constructively, this
means we start with the sets in A, and allow for countably many unions, intersections, and
complements until we run out of ability to add more. (Definition 1.10, Page 5)

o-algebra (Generated By A Random Variable X, o(X)): Where X is a random
variable, the sigma-algebra generated by X is o(X) = {X }(B): B € B(R)}. Unwinding
the definition, this is {{w € Q@ : X(w) € B} € F : B € B(R)}. Informally, it is the minimally
small sigma algebra that completely captures the information revealed by the values of the
random variable. (Definition 2.4, Page 13).

Sigma-Algebra (Generated By Random Variables): The sigma-algebra generated by
a sequence of random variables { X}, ; is the smallest sigma-algebra containing o (X;) for all
i; o({X;}ep) = o (U o(X;)). Here, o(X) = {{w € Q: X(w) € B} : B B(R)}.

iel
(Definition 6.1, Page 51).
Stochastic Process: A sequence of random variables {X,,} _ defined on the same proba-
bility space (2, F,P). (Definition 10.2, Page 92)

neN

Stopping Time: A random variable 7': Q@ — NU{0}U{oo} is a stopping time with respect
to the filtration {F,}, .y if {I'=n} € F, for all n. In other words, 1" is a stopping time
if given only the information up to time n, you know if 7" has happened or not (and the
inclusion of oo allows for the possibility it never happens). (Definition 10.5, Page 94)
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Tail o-Algebra: Where {X;},_, is a sequence of random variables, the tail sigma algebra
is denoted 7 = () 0(Xpn+1, Xnt2,...). The idea is that the Tail o-algebra is the collection
n=1

of events whose occurrence is unaffected when finitely many of the random variables are
changed. (Definition 6.2, Page 51).

Tightness: A sequence of random variables {X,}, y are tight if for all € > 0, there exists
a,b € R such that P(X,, € [a,b]) > 1 — . Equivalently, the sequence is tight if there exists
a,b € R such that Fx, (a) < e and Fy, (b) > 1 —e. (Definition 5.6, Page 40).

Uniformly Integrable: A family of random variables {X;}, ., is uniformly integrable if
lim supE (|X;]L{x,>a3) = 0. (Definition 10.6, Page 95)

M—o0 je71

Variance: The variance of a random variable X, denoted V(X), is the value E [(X — E(X))?] =
E(X?) — (E(X ))2 The square root of the variance is called the standard deviation;
V(X) = 0. (Definition 3.7, Page 21).
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