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Flaherty, 4

1 Probability Triples

1.1 Definitions

Definition 1.1. Sample Space Ω: any set containing outcomes (e.g. heads/tails, 1:6, etc.).

Definition 1.2. σ-Algebra: A collection of sets F from a non-empty set Ω is a sigma-
algebra provided F is closed under countable union and complements. That is, F is a

sigma-algebra if whenever A1, A2, · · · ∈ F we have
∞⋃
i=1

Ai ∈ F and AC
1 ∈ F .

Example 1.1: For Ω = {1, 2, 3}, the set F = {∅, {1} , {2, 3} ,Ω} is a sigma algebra.

Non-example 1.1: For Ω = {1, 2, 3}, the set F = {∅, {1, 2} , {2, 3} ,Ω} isn’t a sigma algebra.

Example 1.2: For Ω∞ denoting all possible sequences of a coin flipped infinitely many times,
and where AH denotes all sequences of flips which begin with a “head” (analogously, ATH

denotes all sequences of flips which begin with first a “tail” and then a “head”, etc.), the
set F = {∅, AH , AT , AHH , AHT , AHT ∪ AT , AHH ∪ AT ,Ω} is a sigma algebra (the generating
sets are AHH , AHT , and AT ).

Non-example 1.2: Where Ω = Z, F = {A ∈ Z : |A| < ∞ or |Ac| < ∞} is an algebra (Def-
inition 1.9, Page 5) but not a sigma-algebra. To see this, consider a sequence of sets
Ai = {i, i+ 1} for i ∈ N. Since each Ai is finite, each Ai is in F . If F was to be a sigma-
algebra, then the countable union of these sets, namely N, must also be in F . But both N
and it’s complement −N ∪ {0} are infinite, so aren’t in F .

Definition 1.3. Event Space F : a σ-algebra consisting of unions, intersections, and com-
plements from elements in the sample space.

Example 1.3: If our sample space is {1, 2, 3}, an event space could be the following:
{∅, {1, 2, 3} , {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3}}. We denote such sigma-algebras 2Ω to in-
dicate it is the power set. Since the power set is the set of all subsets, it is the largest
possible sigma algebra on any finite Ω (compare this example to Example 1.1, for instance).

Definition 1.4. Measurable Space (X,Σ): A set X (for example a sample space) along
with a sigma-algebra Σ on the set.

Definition 1.5. Measure µ: In the context of a measure space (X,Σ), a measure µ : Σ → R
is a function from the sigma-algebra to the real line such that µ(∅) = 0 and µ is countably

additive, i.e. for all disjoint A1, A2, · · · ∈ Σ, µ

(
∞⊎
i=1

Ai

)
=

∞∑
i=1

µ(Ai) ≥ 0.

Definition 1.6. Measure Space (X,Σ, µ): A measurable space along with a measure
acting on the space.

Definition 1.7. Probability Measure P: A probability measure P : F → [0, 1] is a
function on a sigma-algebra F of the sample space Ω such that P(Ω) = 1 and P is countably

additive, i.e. for disjoint Ai’s, P

(
∞⊎
i=1

Ai

)
=

∞∑
i=1

P(Ai). This is a specific case of a general

measure. Note that P(∅) = 0 as a consequence of the other two conditions.
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1.1 Definitions Flaherty, 5

Example 1.4: Probability measures are not unique. Suppose our measure space is Ω =
{1, 2, 3} and F = 2Ω. One probability measure is P(A) = |A|

|Ω| , the uniform measure. A

different measure on the same space is P̃ where P̃ assigns probability 1
2
to the event {1} and

probability 1
4
to the events {2} and {3} (specifying the probability of all the singletons in a

finite power set suffices to completely determine the measure).

Example 1.5: Suppose our sample space is [0, 1] and our sigma-algebra is B([0, 1]) (a borel
set, which is formed by starting with all the closed intervals in [0, 1], and adding in all other
sets necessary for a sigma-algebra). One probability measure is the Lebesgue Measure,

P ([a, b]) = b− a. Another probability measure is P̃ ([a, b]) = b2 − a2.

Definition 1.8. Probability Space (Ω,F ,P): A triple consisting of a sample space Ω,
an event space F , and a probability measure P acting on the measurable space (Ω,F).

Definition 1.9. Algebra: A collection of sets A from a non-empty set Ω is an algebra
provided A is closed under finite unions and complements. That is, A is an algebra if

whenever A1, A2, . . . , An ∈ A we have
n⋃

i=1

Ai ∈ A and AC
1 ∈ A.

Example 1.6: Any sigma-algebra (Definition 1.2, Page 4) is automatically an algebra since
if sets are closed under countable union, they are of course also closed under finite union.

Non-example 1.3: Where Ω = {1, 2, 3, 4}, the set A = {{1, 2} , {2, 3}} is not an algebra
since {1, 2} ∪ {2, 3} = {1, 2, 3} /∈ A.

Example 1.7: Where Ω = Z, F = {A ∈ Z : A or Ac is countable} is an algebra.

Non-example 1.4: Where Ω = Z, F = {A ∈ Z : A is countable} is not an algebra.

Definition 1.10. σ-Algebra (Generated By An Event A, σ(A)): It is trivial to see
that the intersection of sigma algebras is itself a sigma-algebra. So we can define σ(A) to be
the intersection of all sigma-algebras containing A (in this sense, it is the smallest such set).
Constructively, this means we start with the sets in A, and allow for countably many unions,
intersections, and complements until we run out of ability to add more.

Example 1.8: Consider the sample space Ω∞ from Example 1.2 and the event AH along
with the event AHT (i.e. all sequences of coin flips that start with a head and then a
tail). If A = {AH , AHT}, what is σ(A)? We start with {∅,Ω∞, AH , AHT} ⊆ σ(A), the two
generating elements along with the empty and full set which are included by default.

The complement of AH is simply AT .The complement of AHT is everything that doesn’t
start with a head and then a tail, so everything that either starts with a tail, or starts with
back-to-back heads; AC

HT = AHH ∪ AT . So after adding the initial complements, we have
{∅,Ω∞, AH , AHT , AT , AHH ∪ AT} ⊆ σ(A).

The union of ∅,Ω∞, AH , and AT with all elements to their right are already in the set.
The union of AHT with AT is a new element AHT ∪AT . The complement of this new element
is AHH , whose pairwise union with each of the other seven elements are already in the set.
So, σ(A) = {∅,Ω∞, AH , AHT , AHH ∪ AT , AT , AHT ∪ AT , AHH}.

5
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Example 1.9: The Borel sigma-algebra B(R) is generated by intervals on the real line (it
starts with closed intervals, and adds in everything needed to be a sigma-algebra).

An interesting element in B([0, 1]) is the Cantor Set. Label C1 = [0, 1
3
] ∪ [2

3
, 1], label

C2 = [0, 1
9
] ∪ [2

9
, 1
3
] ∪ [2

3
, 7
9
] ∪ [8

9
, 1], and so on (each new Ck removes the middle third of all

parts of Ck−1). The Cantor Set is C =
∞⋂
k=1

Ck.

Since there are 2k disjoint segments in each Ck, each segment of length 1
3k
, under the

Lebesgue measure P, P(Ck) =
(
2
3

)k
. Then as C1 ⊇ C2 ⊇ · · · , by continuity from above

(Theorem 1.1, Page 7), P(C) = P

(
∞⋂
k=1

Ck

)
= lim

k→∞
P(Ck) = lim

k→∞

(
2
3

)k
= 0.

What is interesting about this set is that it has zero probability despite having uncount-
ably many points. To see this, imagine there was an enumeration of points c1, c2, · · · ∈ C.
Let K1 be the portion of C1 that doesn’t contain c1 (so, K1 is either [0, 1

3
] or [2

3
, 1]), K2 be

the portion of K1 ∩ C2 that doesn’t contain c2 (if c2 /∈ K1, pick either section), and so on.
Then K1 ⊇ K2 ⊇ · · · and c1 /∈ K1, c2 /∈ K2, . . . . Due to the nesting of the non-empty Kn,

there must be some element y ∈
∞⋂
n=1

Kn ⊂ C. But due to the construction of the Ki, y is

not in the list c1, c2, . . . ; there cannot be an enumeration of the points of C.

Definition 1.11. Resolved Sets: Suppose we are given a measure space (Ω,F) and an
outcome ω ∈ ω. The sets in the event space F which are resolved by some level of information
are those sets A ∈ F that either definitely contain or definitely don’t contain ω. For this
reason, it may be helpful to informally think of sigma-algebras as “information”.

Example 1.10: Let Ω = Ω3 denote all the possible outcomes of three coin flips. Suppose
that someone performs the coin flips, and you are interested in their outcome ω ∈ Ω2. If
the person tells you the value of the first flip, you are not able to fully know ω, but you can
narrow down the possibilities.

Of the sets in 2Ω, ∅ and Ω are always resolved (Ω is definitely in Ω, and ∅ is definitely
not in ∅). With the additional information given, the sets AH = {ωHH , ωHT} and AT =
{ωTH , ωTT} are also resolved (e.g., if they tell you the first flip is a head, then ω is definitely
in AH and definitely not in AT ). All together, the sets that are resolved by the information
form a sigma-algebra F1 = {∅,Ω, AH , AT}.

Definition 1.12. Filtration: Where Ω is a sample space, where T is some fixed positive
number, and where Ft is a sigma-algebra for all t ∈ [0, T ], then if Fs ⊆ Ft whenever s ≤ t,
we say the collection Ft for t ∈ [0, T ] is a filtration.

Example 1.11: Suppose the person in Example 1.10 now reveals the first two flips of ω.
Then the sets AHH , AHT , ATH , and ATT are also resolved, and we get the sigma-algebra
F2 of all these unions and complements. Then {∅,Ω} = F0 ⊆ F1 ⊆ F2 is a filtration– as we
get further along, we get more and more information about ω.
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1.2 Theorems And Examples

Theorem 1.1. Properties of Probability Measures: All probability triples (Ω,F ,P)
satisfy the following:

1. Monotonicity, if A,B ∈ F with A ⊆ B, then P(A) ≤ P(B)

2. Subadditivity, if A1, A2, · · · ⊂ F , then P
(⋃

i

Ai

)
≤

∞∑
i=1

P(Ai)

3. Continuity from below and above:

(a) From below, A1 ⊆ A2 ⊆ · · · =⇒ P

( ∞⋃
i=1

Ai

)
= lim

n→∞
P(An)

(b) From above, B1 ⊇ B2 ⊇ · · · =⇒ P

( ∞⋂
i=1

Bi

)
= lim

n→∞
P(Bn)

Proof. For 1, P(B)=P(B ∩ Ac) +P(A) by countable additivity, and P(B ∩ Ac) ≥ 0.

For 2, we first make the union disjoint, then apply countable additivity, then apply mono-

tonicity. Call A′
1 = A1, A′

2 = A2 ∩ (A′
1)

C , etc. Then P(
⋃
i

Ai) = P(
⊎
i

A′
i) =

∞∑
i=1

P(A′
i)

by countable additivity. By construction, A′
i ⊆ Ai for every i, so by 1, we conclude

∞∑
i=1

P(A′
i) ≤

∞∑
i=1

P(Ai).

For 3a, we use the same construction as for 2 and the fact that
n⋃

i=1

A′
i = A′

n for all n.

Then P
( ∞⋃

i=1

Ai

)
= P

( ∞⊎
i=1

A′
i

)
=

∞∑
i=1

P(A′
i) = lim

n→∞

n∑
i=1

P(A′
i) = lim

n→∞
P

( n⊎
i=1

A′
i

)
= lim

n→∞
P(An).

An analogous process is used for 3b.

Theorem 1.2. Caratheodory’s Extension Theorem: Let A be an algebra, and assume
P : A → [0, 1] satisfies the requirements for a probability measure. Then there exists a

unique P̃ : σ(A) → [0, 1] such that P̃(A) = P(A) for all A ∈ A.

Theorem 1.3. Uniqueness of CDF: Where Ω = R, and F = B(R), define a new function,
F : R → [0, 1] given by F (x) = P((−∞, x]) that fulfills the following:

1. Monotone Increasing: if a ≤ b then F (a) ≤ F (b)

2. Right Continuous: if xn ↘ x (i.e. x1 > x2 > · · · and lim
n→∞

xn = x), then F (xn) ↘ F (x)

(essentially, continuity from below, Theorem 1.1, with
∞⋂
n=1

(−∞, xn] = (−∞, x]).

3. Limits at ±∞: if xn ↘ −∞, then F (xn) = 0 and if xn ↗ ∞, then F (xn) = 1

Then there exists a unique probability measure P such that P([a, b]) = P
(
(−∞, b)

)
−

P
(
(−∞, a)

)
= F (b) − F (a) for all a, b ∈ R. We call F the Cumulative Distribution

Function of P.
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1.3 Problems

Problem 1.1) Let (Ω,F ,P) be a probability space. Show that for any A,B ∈ F ,
we have P (A ∪ B) = P(A) +P(B) −P(A ∩ B).

Identity the union of A and B as everything in A that’s not in B (notationally, (A∩Bc)),
along with everything in B that’s not in A (notationally, (B ∩ Ac)), along with everything
shared between A and B (notationally, A∩B). This is a disjoint union, so by the probability
axioms:

P(A ∪B) = P(A ∩Bc) +P(B ∩ Ac) +P(A ∩B) (1.1)

Now see A can be written as everything in A that’s not in B along with the shared
elements of A and B (notationally, A = (A ∩ Bc) ∪ (A ∩ B)). For the same reasoning,
B = (B ∩ Ac) ∪ (A ∩ B). Both of these are disjoint unions, so again by the probability
axioms:

P(A) = P(A ∩Bc) +P(A ∩B) =⇒ P(A ∩Bc) = P(A)−P(A ∩B) (1.2)

P(B) = P(B ∩ Ac) +P(A ∩B) =⇒ P(B ∩ Ac) = P(B)−P(A ∩B) (1.3)

Plugging in Equation 1.2 and 1.3 to Equation 1.1, we reach our conclusion:

P(A ∪B) = [P(A)−P(A ∩B)] + [P(B)−P(A ∩B)] +P(A ∩B) (1.4)

=P(A) +P(B)−P(A ∩B) (1.5)

8
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Problem 1.2) Let F be the collection of subsets A ⊂ R that are either countable
or cocountable (meaning Ac is countable). Define P : F → [0, 1] by P(A) ={
0, A is countable

1, A is cocountable
. Note that a subset of R cannot be both countable and

cocountable, so this map is well-defined.

a. Show that F is a σ-algebra.

We just check the axioms, starting with closure of complement. Let A be a generic element
of F . If A is uncountable, then it is in F because Ac is countable, and we are immediately
done as Ac is in F since Ac is countable. So instead suppose A is countable. Then Ac is in
F since (Ac)c = A is countable.

Now let A1, A2, · · · ∈ F be a generic (possible countably infinite) collection of sets in
A. If all these sets are countable, then so is their union. To see this, label the elements of
A1 = {a11 , a12 , . . . }, the elements of A2 = {a21 , a22 , . . . }, etc. (this is what it means to be
countable). Then the union of the sets is seen to be countable through a diagonal argument
(first a11 , then a12 , then a21 , then a13 , etc.); the union of countably many countable sets
is countable. So instead suppose at least one of the sets in the union is uncountable, call
it Ak. Then the complement of the union is

( ⋃
i=1

Ai

)c
=
⋂
i=1

Ac
i from DeMorgan. Since Ak

is a member of the intersection and is countable, so is the intersection (and therefore the
complement of the union). So F is closed under countable union and we see it is a σ-algebra.

b. Show that P is a probability measure.

Recall P is a probability measure if P(Ω) = 1 and if it is countably additive, that is if
P(
⊎
i=1

Ai) =
∑
i=1

P(Ai) for a countable collection of Ai ∈ Ω. Since R is uncountable (recall

Cantor’s diagonalization argument, that if f(n) was a listing of numbers from n ∈ N, with
each f(n) having a decimal expansion 0.an1an2an3 . . . , such a collection would necessarily
exclude real numbers in (0, 1) since the decimal expansion b = 0.b1b2 . . . where bn = 2 if
ann = 1 and bn = 1 if ann ̸= 1 is not contained in the f(n)), and has a countable complement
(namely, the null set), P(R) = 1.

Now let {Ai}i∈N be a countable collection of disjoint subsets of F . If the Ai are all
countable, then so to is their union (see part a above), and thus P(

⊎
i=1

Ai) = 0 =
∑
i=1

0 =

∞∑
i=1

P(Ai). If one Ai is cocountable, call it Ak, then by construction of F , the complement

of Ak is countable. Since the union is disjoint, this means every other set in the union is
countable (because they must reside in the complement of Ak). So P(

⊎
i=1

Ai) = 1 = 1 + 0 =

P(Aj) +
∑

i=1,i ̸=j

P(Ai) =
∑
i=1

P(Ai).

9
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Problem 1.3) Let Ω = {1, 2, 3, 4} and F = 2Ω (this is notation for the power set
of Ω, which is the σ-algebra consisting of all subsets of Ω.)

a. Give an example of a collection A ⊂ F and a map P : A → [0, 1] such that:

1. σ(A) = F
2. Ω ∈ A and P(Ω) = 1

3. Whenever A1, . . . , An ∈ A are disjoint and ∪n
i=1Ai belongs to A, we have

P(∪n
i=1Ai) =

∑n
i=1P(Ai)

and yet there is no probability measure P̃ : F → [0, 1] such that P̃(A) = P(A)
for all A ∈ A. This shows that the existence part of Caratheodory’s Extension
Theorem fails without the assumption that A is an algebra.

Consider the collection A = {{1, 2, 3, 4} , {2, 3, 4} , {1, 3, 4} , {1, 2, 4} , {1, 2, 3}} and the
probability measure P(A) = 1 for all A ∈ A.

The smallest sigma algebra containing A is F since the complement of the triples gives
the singletons, after which all the possible unions and intersections can be generated. The
probability measure as stated is valid, since the full sample space has probability 1 and since
each of the five elements of A are not disjoint to begin with.

Now imagine there was such a probability measure P̃ on σ(A). Then we’d need to

have P̃({1}) = 0 since P̃
(
{1, 2, 3, 4}

)
= P̃

(
{1} ⊎ {2, 3, 4}

)
= P̃

(
{1}

)
+ P̃

(
{2, 3, 4}

)
but

P̃({1, 2, 3, 4}) = P({1, 2, 3, 4}) = 1 and P̃({2, 3, 4}) = P({2, 3, 4}) = 1 as well.

The same reasoning shows we would need P̃(2) = 0 and P̃(3) = 0. But such a scenario is

impossible because P̃({1, 2, 3}) = P({1, 2, 3}) = 1 ̸= 0.

10
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b. Give an example of a collection A ⊂ F and two maps P1,P2 : F → [0, 1] such
that:

1. σ(A) = F
2. P1 and P2 are valid probability measures

3. P1(A) = P2(A) for all A ∈ A

and yet P1 ̸= P2. This shows that the uniqueness part of Caratheodory’s Exten-
sion Theorem fails without the assumption that A is an algebra.

Take the set A = {{1, 2} , {2, 3}} and consider the probability measures P1,P2 : F →
[0, 1] given by P1(A) =

1
2
(11∈A + 13∈A) and P2(A) =

1
2
(12∈A + 14∈A).

First we show the sigma algebra generated by A is F = 2Ω. We generate the singletons as
follows: the intersection of {1, 2} ∈ A and {2, 3} ∈ A is {2}. The complement of {1, 2} ∈ A
is {3, 4}, whose intersection with {2, 3} ∈ A is {3}. The complement of {2, 3} ∈ A is
{1, 4}, whose intersection with {1, 2} ∈ A is {1}. The complement of the union of the three
singletons generated above gives the fourth singleton, after which we can generate the whole
power set.

Next we show the probability measures are valid on F . The full sample space has prob-
ability one since 1 and 3 are in Ω for P1 and since 2 and 4 are in Ω for P2. The probability
of disjoint unions is equivalent to the sum of the probabilities of the sets making up the
disjoint unions since P1 gives a uniform probability on {1} and {3} and P2 gives a uniform
probability on {2} and {4}.

Finally, we show the probability measures agree on A. There are only two cases to check:
P1({1, 2}) = 1

2
(11∈A + 13∈A) =

1
2
(1 + 0) = 1

2
= 1

2
(1 + 0) = 1

2
(12∈A + 14∈A) = P2({1, 2}) and

P1({2, 3}) = 1
2
(11∈A+13∈A) =

1
2
(0+1) = 1

2
= 1

2
(1+0) = 1

2
(12∈A+14∈A) = P2({2, 3}). So P1

and P2 agree on A, but not on all of F (see for example that
[
P1({1}) = 1

2

]
̸= [0 = P2({1})]).

11
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2 Measurable Functions And Random Variables

2.1 Definitions

Definition 2.1. Measurable Function: A function X : Ω → S between measure spaces
(Ω,F) and (S,S) is measurable if whenever B ∈ S, X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F
(the inverse image of every measurable set is measurable). To emphasize that dependency
on the respective sigma-algebras and to be precise, we might say “X is (F ,S) measurable”
(or just “X is F -measurable” when S is understood) and write X : (Ω,F) → (S,S).

Definition 2.2. Random Variable: A measurable function X : Ω → R between measure
spaces (Ω,F) and (R,B(R)) (it is just a specific case of a measurable function where the
codomain is fixed). Note that the “randomness” from a random variable comes from the
random experiment of choosing the ω ∈ Ω. Note further that to emphasize the fact that a
random variable is a function, we may often write X(ω) (though X may be used for brevity).

Example 2.1: Every random variable X is (σ(X),B(R)) measurable (see Definition 2.4).

Example 2.2: Consider a measure space (Ω3,F3 = 2Ω3) where Ω3 denotes the outcomes
of three coin flips and 2Ω3 is the power set. Label each of the eight elements ω ∈ Ω3 in
accordance to the coin flip outcomes, (e.g. ωHHT ), and label each set in the event space
likewise (e.g. AHT = {ωHTH , ωHTT}). Then Y (ω) = (# number of heads in first two flips)
is a random variable. Informally, this is because the “information” contained in F3 is
sufficient to completely determine the output of the Y ; Y is F3-measurable.

Non-example 2.1: Consider the same sample space and function Y as Example 2.2. If we
replace F3 with F = {∅,Ω3, A••H , A••T} (where A••H is the event that the third flip is
“heads”), then Y is not a F -measurable function. Informally, this is because the “informa-
tion” in F is insufficient to determine the output of Y ; knowing which events ω belongs to in
F does not allow you to determine Y (ω). Concretely, ω1 = ωHHT and ω2 = ωHTT are both
in A••T and Ω3 (and not in the other two sets) and yet Y (ω2) = 1 ̸= 2 = Y (ω1). Another
way to look at it is to take B = {2} ∈ B(R). Then Y −1({2}) = {AHHH , AHHT} /∈ F .

Example 2.3: Where (Ω,F) is a measure space and A ∈ F , the indicator function

1A : Ω → R where 1A(ω) =

{
1, ω ∈ A

0, ω /∈ A
is a random variable.

We need to check that the inverse image of every set in B(R) is measurable. That is, we
need to check that the inverse of all subsets B from B(R) are subsets of F .

So let B be given. The pre-image of B is dependent on whether B contains either 0 or
1. If B contains 1 but not 0, then 1−1

A (B) is A. If B contains 0 but not 1, then 1−1
A (B) is

Ac. If B contains both 0 and 1, then 1−1
A (B) contains both Ac and A, i.e. is Ω. Finally, if

B contains neither 0 and 1, then since any element in Ω maps to either 1 or 0, 1−1
A (B) is

the empty set. Since we start with A ∈ F and sigma algebras are closed under compliment,
Ac ∈ F . Sigma algebras also necessarily contain the full and empty set, so this proves 1A
is measurable.

12



2.1 Definitions Flaherty, 13

Definition 2.3. Random Vector: A measurable function (X1, X2, . . . , Xn) : (Ω
n,Fn) →

(Rn,B(Rn)). This is essentially just n random variables placed next to each other.

Definition 2.4. σ-algebra (Generated By A Random Variable X, σ(X)): Where X
is a random variable, the sigma-algebra generated by X is σ(X) = {X−1(B) : B ∈ B(R)} =
{{ω ∈ Ω : X(ω) ∈ B} ∈ F : B ∈ B(R)}. Informally, it is the minimally small sigma algebra
that completely captures the information revealed by the values of the random variable.

Example 2.4: Consider the random variable Y from Example 2.2, where the realization of
Y is the number of heads in the first two flips of a coin flipped three times.

There are a few Borel sets to check to help us build the sigma-algebra σ(Y ). Note that
the exact borel sets below are not unique (e.g. B7 could just as well be {3}).

� B1 = {2} =⇒ Y −1(B1) = AHH

� B2 = {1} =⇒ Y −1(B2) = AHT ∪ ATH

� B3 = {0} =⇒ Y −1(B3) = ATT

� B4 = {[1, 2]} =⇒ Y −1(B4) = AH ∪ ATH

� B5 = {[0, 1]} =⇒ Y −1(B5) = AT ∪ AHT

� B6 = {[0, 2]} =⇒ Y −1(B6) = Ω3

� B7 = {[0.25, 0.75]} =⇒ Y −1(B7) = ∅

Do these seven elements actually form a sigma-algebra? Since every element’s com-
plement must be in the set, and since there are currently an odd number of elements, we
know the answer is “no”. Using the systematic approach from Example 1.8, we see that
the only element whose complement is missing is AHT ∪ ATH . So we add in AHH ∪ ATT ,
and after checking each of the pairwise unions, see that these eight elements are indeed a
sigma-algebra, σ(Y ) = {∅,Ω3, AHH , ATT , AHT ∪ ATH , ATT ∪ AHH , AH ∪ ATH , AT ∪ AHT}.

Notice that this sigma-algebra is but a small subset of F3 = 2Ω3 which has 22
3
= 256

elements. We repeat that Y is F3-measurable; the “information” in F3 is more than sufficient
to determine the value of Y . But what about all this “extra” information? For instance,
AH is an element of F3 (and even F1!), but AH only appears in σ(Y ) as a union with other
elements. This is because knowing the value of Y is not enough to know if the first flip was
“heads”. For example, if Y = 1, the first flip might have been heads, or the first flip might
have been tails– both ωHTT and ωTHT map to 1, after all.

Definition 2.5. Distribution (Push-forward, Law) Of A Random Variable, µX: Let
(Ω,F ,P) be a probability space and X : (Ω,F) → (R,B(R)) be a random variable. Then
the law of X (distributional measure, push-forward) is the function µX : B(R) → [0, 1] given
by µX(B) = P(X−1(B)) = P ({ω ∈ Ω : X(ω) ∈ B}).

Example 2.5: If the measure space in the domain of a random variable is equipped with a
probability measure, then the random variable will have a distribution. But distributions
and random variables are different concepts– different random variables can have the same
distribution, and a single random variable can have two different distributions (by changing
the probability measure).

13



2.1 Definitions Flaherty, 14

Consider the probability measures P([a, b]) = b − a and P̃([a, b]) = b2 − a2 acting on
the borel set B([0, 1]). Consider further the random variables X(ω) = ω and Y (ω) = 1− ω
for all ω ∈ ([0, 1] = Ω). Even though X ̸= Y , µX = µY under P. See that µX([a, b]) =
P({ω ∈ Ω : X(ω) ∈ [a, b]}) = b−a = (1−a)−(1−b) = P({ω ∈ Ω : X(ω) ∈ [1− b, 1− a]}) =
P({ω ∈ Ω : Y (ω) ∈ [a, b]}) = µY ([a, b]) where the second to last equality follows from the
observation that a ≤ 1− ω ≤ b =⇒ −a ≥ ω − 1 ≥ −b =⇒ 1− a ≥ ω ≥ 1− b.

On the other hand, µ̃X ̸= µ̃Y . See that µ̃X([a, b]) = P̃({ω ∈ Ω : X(ω) ∈ [a, b]}) = b2−a2

but that µ̃Y ([a, b]) = P̃({ω ∈ Ω : Y (ω) ∈ [a, b]}) = P̃({ω ∈ Ω : X(ω) ∈ [1− a, 1− b]}) =
(1− b)2 − (1− a)2 = a2 − b2 − 2a+ 2b.

Example 2.6: Occasionally, a random variable X may have a density function (PDF),

fX(x). This happens if µX([a, b]) = P(a ≤ X ≤ b) =
b∫
a

fX(x) dx for all a, b ∈ R (where fX

is necessarily non-negative). Random variables with PDFs are called continuous random
variables.

Example 2.7: Occasionally, random variables may have a probability mass function
(PMF). This happens when there is a countable sequence of numbers x1, x2, . . . which the
random variable takes on with probability one, and we have a pi such that µX(B) = P(X ∈
B) =

∑
i,xi∈B

pi. Random variables with PMFs are often called discrete random variables.

Non-example 2.2: Random variables need not have either a density or a probability mass

function. Consider the random variable Y =
∞∑
n=1

2Yn

3n
where Yn

i.i.d∼ Bern(0.5). See that

through the first n summands, Y takes on values from the Cantor Set given in Example 1.9,
Page 6 (if Y1 = 0, which happens with probability 1

2
, then Y ∈

[
0, 1

3

]
; if Y1 = 0 and Y2 = 1

which happens with probability 1
4
, then Y ∈

[
2
9
, 1
3

]
, etc.).

If there was a density function for Y , call it fY , then we would need to see
∫∞
−∞ fY (y) dy =∫ 1

0
fY (y) dy = 1. However, we have shown in the details to the Cantor Set explanation that

C has Lebesgue Measure 0 and thus is almost everywhere zero;
∫ 1

0
fY (y) dy = 0.

If there was a probability mass function for Y , then we would need to have P(Y = x) > 0

for some x ∈ C. See that x can be expressed as a base-three expansion x =
∞∑
n=1

1
3n
xn where

xn ∈ Z3 (if x ∈ C, then x ∈ Cn for all n, which requires x1 to be either 0 or 2, and so on).
There is some subtlety in that infinite expansions can be represented in two different ways.
For example, C ∋ 1

9
= 0 · 1

3
+ 0 · 1

9
+ 2 · 1

27
+ 2 · 1

81
+ 2 · 1

243
+ · · · (this is an example of a

geometric series
∞∑
n=0

arn with r = 1
3
and 1

9
= a

1−r
=⇒ a = 2

27
). From this perspective, it is

clear that there is at most two choices of ω ∈ Ω which yield any given x ∈ C. Since C is
uncountable, this means P({ω ∈ Ω : X(ω) = x}) = 0; there can not be a mass function.

14



2.1 Definitions Flaherty, 15

Definition 2.6. Cumulative Density Function (CDF) Of A Random Variable:
Where µX is the law (Definition 2.5, Page 13) of a random variable X, the CDF of X is
the function FX : R → [0, 1] given by:

FX(x) = µX

(
(−∞, x]

)
= P(X−1 (−∞, x]) = P({ω ∈ Ω : X(ω) ≤ x}) = P(X ≤ x)

Here x (lowercase) denotes a generic element of the domain R, and X (uppercase) denotes
the random variable. So, we might have, e.g. X(ω) = x. Compare this definition to Theorem
1.3, which doesn’t require a random variable. This is really the exact same idea, it just maps
the image of the random variable back to the sample space.

Definition 2.7. Quantile Function: Where FX is a valid CDF for a random variable
X, the quantile function for FX is the function F−1

X : [0, 1] → R given by F−1
X (u) =

inf {t ∈ R : FX(t) ≥ u}. We capture the intuition behind the quantile function at the cost of
precision (since FX may not have an inverse) when we use the notation F−1

X .

15
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2.2 Theorems And Examples

Theorem 2.1. Composition of Measurable Maps Is Measurable. Let (Ω,F), (S,S),
and (T, T ) be measure spaces. Further let X : Ω → S and Y : S → T be (F ,S) and (S, T )
measurable respectively. Then Z = Y ◦X : Ω → T is (F , T ) measurable.

Proof. LetB ∈ T be given. Then Z−1(B) = X−1(Y −1(B)). Since Y is measurable, Y −1(B) ∈
S. And since X is measurable and Y −1(B) ∈ S, X−1(Y −1(B)) ∈ F as desired.

Theorem 2.2. Check generating set. A trick to ensuring measurability is to check a
generating set. If (Ω,F) and (S,S) are measure spaces and B ⊆ S such that σ(B) = S, then
if X : Ω → S satisfies X−1(a) ∈ F for all a ∈ S; X is measurable.

Proof. Consider the set S ′ = {B ⊆ S : X−1(B) ∈ F}. If we can show S ′ is a sigma-algbera,
then we will have arrived at our conclusion; since σ(B) is the smallest sigma-algebra con-
taining B, we would see S ⊆ S ′ and from how S ′ is defined, the inverse image of any set in
S ′ is in F , which is the definition of measurable. To that end, let B1, B2, . . . be given.

Since B1 ∈ S ′, X−1(B1) ∈ F , and then since F is a sigma-algebra, X−1(Bc
1) ∈ F . But

S ′ is the set of all elements in S whose inverse mapping is in F , so Bc
1 must be in S ′. This

proves S ′ is closed under compliment.

Since B1, B2, · · · ∈ S ′, each of X−1(Bi) ∈ F . Since F is a sigma-algebra,
∞⋃
i=1

X−1(Bi) ∈ F .

But then X−1(
∞⋃
i=1

Bi) ∈ F and so
∞⋃
i=1

Bi ∈ S ′. This proves S ′ is closed countable union and

thus is a sigma-algebra and we’ve reached our result.

Corollary 2.2.1. Sup And Inf Are Random Variables.
Recall that we say L is the least upper bound (supremum) of a set A provided L ≥ a

for all a in A (L is an upper bound) and provided whenever M ≥ a for all a ∈ A, L ≤
M (L is the least upper bound). Similarly define the greatest lower bound (infimum).
Relatedly, we can define the limit superior of a sequence {sn}n∈N as the value L such that
L = lim

m→∞
sup {sn : n > m} (it is an infimum of supremums) and similarly define the limit

inferior. As an illustrative example take: Sn =
{
1 + 1

2
, 0− 1

2
, 1 + 1

4
, 0− 1

4
, 1 + 1

8
, 0− 1

8
, . . .

}
.

Then sup {Sn} = 3
2
, inf {Sn} = −1

2
, lim sup {Sn} = 1, and lim inf {Sn} = 0. A sequence {Sn}

only has a limit if lim inf {Sn} = lim sup {Sn}.

Now to our statement. Where X1, X2, . . . , Xn are random variables on (Ω,F), define a
random variable X : Ω → R by X(ω) = inf {Xi(ω)}i∈[1,n]. We claim X is a random variable.
By Theorem 2.2, we just need to verify measurability on a generating set B = (−∞, a). Since
the function is the infimum, we see infXn ≤ a =⇒ ∪{ω ∈ Ω : Xn(ω) < a} ∈ F . Similar
reasoning proves the supremum, and then by Theorem 2.1, we also see the limit inf/superior
is a random variable.

16
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2.3 Problems

Problem 2.1) Let (Ω,F) and (S,S) be measurable spaces, and X : Ω → S
a measurable map. We denote the pre-image of any B ⊆ S by X−1(B) =
{ω ∈ Ω : X(ω) ∈ B}. Define the collection of all pre-images of measurable sets
ω(X) = {X−1(B) : B ∈ S}. Since we assume X is measurable, we know σ(X) ⊂
F . Show that σ(X) is a σ-algebra.

We go directly for the definition. Assume A,A1, A2, . . . are sets in σ(X).

Since A ∈ σ(X), there exists a B ∈ S such that X−1(B) = A. Further, since A is the set
of all elements in Ω that map into B under X, Ac is the set of all elements in Ω that map
into Bc under X. Then Ac ∈ ω(X) if and only if Bc ∈ S. But S is a sigma-algebra, so is
closed under compliment. As B ∈ S, this means Bc ∈ S and we have shown σ(X) is closed
under compliment.

Since the Ai are all in σ(X), there exists corresponding Bi ∈ S such that for every i,
X−1(Bi) = Ai. Thus if the union of the Bi’s are in S, it must be the case that the union
of the Ai’s are in σ(X). As each Bi resides in S and S is a sigma-algebra (and so is closed
under countable union), the union of the Bi’s is also in S and we have shown σ(X) is closed
under countable union.

Problem 2.2) Let U be a uniform random variable on the open unit interval.
Define f : (0, 1) → R+ by f(u) = − ln(1− u) Compute the distribution function
FX of X = f(U).

Given U ∼ (0, 1), we know the CDF is FU(u) =
u−0
1−0

= u for values of u in the open unit
interval. We are asked to compute the CDF of the transformation. The general CDF method
is shown below:

FX(x) = P(X ≤ x) = P(f(U) ≤ x) = P(U ≤ f−1(x)) = FU

(
f−1(x)

)
Since f(u) = − ln(1− u), we compute the inverse as:

u = − ln
(
1− f−1(u)

)
e−u = 1− f−1(u)

f−1(u) = 1− e−u

So substituting from above (with a restriction on x ≥ 0), we have:

FX(x) = FU

(
f−1(x)

)
= FU

(
1− e−x

)
= 1− e−x

17
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Problem 2.3) Let U be a uniform random variable on the open unit interval.
Let F be any distribution function (i.e. is non-decreasing, right continuous,
mapping to the closed unit interval, and has left and right limits at ±∞ of 0 and
1 respectively), Find a function f : (0, 1) → R such that the random variable
X = f(U) has F as its distribution function.

From the reasoning in Problem 2.2, we want f to be the inverse of F (this is the quantile
function). However the restrictions on F : R → [0, 1] don’t imply injectivity; F may not have
an inverse. We can get around this by defining f(u) = inf {x ∈ R : F (x) ≥ u} (in non-precise
words, the smallest member of the domain of F whose image under F is at least u).

First check f is well-defined. For any u, f(u) < ∞ since F (x) goes to 1 as x goes to
infinity, and since u is maximally 1. Similarly, f(u) > −∞ since F (x) goes to 0 as x goes to
minus infinity, and since u in minimally 0.

Ultimately, we want to show X = f(U) satisfies F (x) = P(X ≤ x) = P(f(U) ≤ x) =
P(U ≤ F (x)) = F (U). The third equality is what remains to be shown (i.e. f(U) ≤ x ⇐⇒
U ≤ F (x)). The second direction follows immediately from f being an infimum of the x’s.
The first direction follows from the monotonicity and right-continuity of F . This proves the
distribution function of f is F as desired.

Problem 2.4) Let {Xi}∞
i=1 be independent exponential random variables of rate 1,

i.e P(Xi ≥ x) = e−x for x ≥ 0. Let Mn = max1≤i≤n Xi. Show that for any t ∈ R,
lim
n→∞

P(Mn − ln(n) ≤ t) = e−e−t
. The double exponential on the right-hand side

is called the Gumbel distribution. Roughly speaking, this results tells us that
for large n, Mn

∼= ln(n) + Z, where Z is a random variable with the Gumbel
distribution.

See that P(Mn ≤ t) = P(X1, X2, . . . , Xn ≤ t) = P(X1 ≤ t)P(X2 ≤ t) · · ·P(Xn ≤ t) by
independence, and further that P(X1 ≤ t)P(X2 ≤ t) · · ·P(Xn ≤ t) = [P(X1 ≤ t)]n by the
identical distribution. So the distribution of Mn is P(Mn ≤ t) = [1− e−t]

n
(each of the Xi’s

is ∼ Exp(1)).

Then lim
n→∞

P(Mn − ln(n) ≤ t) = lim
n→∞

P(Mn ≤ t + ln(n)) = lim
n→∞

[
1− e−(t+ln(n))

]n
. Ex-

panding, we have lim
n→∞

[
1− e−(t+ln(n))

]n
= lim

n→∞

[
1− e−te− ln(n)

]n
= lim

n→∞

[
1 + −e−t

n

]n
. Using

the limit definition of e, this is precisely e−e−t
as desired.

18
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Problem 2.5) Check that the “bell curve” is in fact a density function. That is,

show that
∫∞
−∞

e−
t2

2√
2π

dt = 1.

First note for all positive a, a = 1 if and only if a2 = 1. To the problem at hand, we have:(∫ ∞

−∞

e−
t2

2

√
2π

dt

)2

=

∫ ∞

−∞

e−
x2

2

√
2π

dx ·
∫ ∞

−∞

e−
y2

2

√
2π

dy Variable change

=

∫
R

∫
R

e−(x2+y2)/2

2π
dx dy Integration is bilinear

=

∫ 2π

0

∫ ∞

0

e−r2/2

2π
r dr dθ Polar coordinates

=

∫ 2π

0

1

2π

(∫ ∞

0

r · e−r2/2 dr

)
dθ Pull out constants

=

∫ ∞

0

r · e−r2/2 dr Integrate over angle

=

∫ ∞

0

e−u du = −e−u |∞0 = 1 Integrate over radius

The step transforming to polar coordinates follows from the substitution x = r cos θ and
y = r sin θ. For the integrand, we then have x2+y2 = r2(cos2 θ+sin2 θ) = r2. For the variables

of integration, we have J =

[
dx
dr

dx
dθ

dy
dr

dy
dθ

]
=

[
cos θ −r sin θ
sin θ r cos θ

]
and so dx dy = |det(J)|dr dθ =

|r cos2 θ+ r sin2 θ| dr dθ = r dr dθ. For the limits of integration, we transform the xy-plane to
polar coordinates; the radius must stretch (0,∞), and the angle must rotate (0, 2π).

The step integrating over the radius comes from the substitution u = r2

2
. Then du

dr
= r

and so du = r dr and the integrand is changed from r · e−r2/2 dr to e−u du.

Problem 2.6) Let {Gn}∞
n=1 be such that P(Gn) → 1 as n → ∞. Show that for

any other sequence {An}∞
n=1, we have lim inf

n→∞
P(An) = lim inf

n→∞
P(An ∩ Gn) and

lim sup
n→∞

P(An) = lim sup
n→∞

P(An∩Gn). This justifies the practice of “restricting to

a good event”, provided the good event occurs with probability tending to 1.

By properties of probability, we can write:

P (An) = P (An ∩Gn) +P (An ∩Gc
n) ≤ P (An ∩Gn) +P (Gc

n)

=⇒ P (An)−P (Gc
n) ≤ P (An ∩Gn)

Then since P(An ∩Gn) ≤ P(An) for any n, we can squeeze P (An ∩Gn):

P (An)−P (Gc
n) ≤ P (An ∩Gn) ≤ P (An)

As Gn → 1, we must have Gc
n → 0. Then as n → ∞, we see:

P (An) ≤ P (An ∩Gn) ≤ P (An)

This proves our result.
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3 Expectations Of Random Variables

3.1 Definitions

Definition 3.1. Lebesgue Integral: Recall the definition of the Riemann Integral for a
differentiable function f . Partition the domain a = x0 < x1 < · · · < xn−1 < xn = b, let
Mk = max

xk−1≤x≤xk

f(x), mk = min
xk−1≤x≤xk

f(x), Π = {x0, . . . , xn}, and ∥Π∥ = max
1≤k≤n

(xk − xk−1),

then see the Upper Riemann Sum (RSΠ+(f) =
n∑

k=1

Mk · (xk −xk−1) and Lower Riemann Sum

(RSΠ−(f) =
n∑

k=1

mk · (xk − xk−1) converge to the same value as ∥Π∥ goes to zero, namely∫ b

a
f(x) dx. Integrating in this way necessitates a natural ordering of the domain, which is a

property that Ω, unlike R, may not have. For that reason, instead of partitioning the domain,
we partition the range in the Lebesgue Integral.

So assume for now that 0 ≤ X(ω) < ∞. Partition the range of the random variable X
as 0 = y0 < y1 < . . . and as before denote Π = {y0, . . . , yn} and ∥Π∥ = max

1≤k≤n
(yk − yk−1).

Consider the event Ak = {ω ∈ Ω : yk ≤ X(ω) ≤ yk+1}. Then the Lebesgue Integral is the

limit of the Lower Lebesgue Sum as ∥Π∥ goes to zero; lim
∥Π∥→0

∞∑
k=1

ykP(Ak) =
∫
Ω
X(ω) dP(ω).

Define X+(ω) = max {X(ω), 0} and X−(ω) = max {−X(ω), 0} (in the future we may ab-
breviate maximum as X∨0). If P({ω ∈ Ω : X+(ω) = ∞}) = P({ω ∈ Ω : X−(ω) = ∞}) = 0,
then we say X is integrable and have

∫
Ω
X(ω) dP(ω) =

∫
Ω
X+(ω) dP(ω)−

∫
Ω
X−(ω) dP(ω).

If both P({ω ∈ Ω : X+(ω) = ∞}) > 0 and P({ω ∈ Ω : X−(ω) = ∞}) > 0, then the Lebesgue
Integral is undefined. If only one of the positive or negative parts of X takes values of in-
finity with non-zero probability, then the Lebesgue Integral is either ∞ (in the case where
0 = P({ω ∈ Ω : X−(ω) = ∞}) < P({ω ∈ Ω : X+(ω) = ∞}) or −∞ (in the other case).

We may be interested in integrating our random variable over a subset A of Ω. In such
cases, we write

∫
A
X(ω) dP(ω) =

∫
Ω
1A(ω)X(ω) dP(ω) where 1A(ω) is the indicator function

previously defined. Note that in all cases, we are integrating with respect to the probability
measure in question, since the same event may have different probabilities under different
measures. We define the expectation of X as it’s Lebesgue Integral, and write E(X) =∫
Ω
X(ω) dP(ω). As we’ll see below, this is just one of many ways to define expectation.

Example 3.1: Consider the function f : [0, 1] → {0, 1} taking on values of zero if x is rational
and 1 otherwise. A result from analysis is that Q is dense in R (that is, in any interval of R
there will be both rational and irrational numbers). For this reason, regardless of the size
of ∥Π∥, the Upper Riemann Sum will always be 1 and the Lower Riemann Sum will always
be 0; the Riemann Sum is undefined. In contrast, if X(ω) is a random variable defined in
the same manner, then the Lebesgue Integral is defined (in fact, it is 1). To see why this is
the case, recall that Q is countable, and thus, by countable additivity and the fact that any
individual point has probability zero, P({ω ∈ Ω : X(ω) = 0}) = 0. So, since P([0, 1]) = 1,
P({ω ∈ Ω : X(ω) = 1}) = 1.
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Definition 3.2. Riemann-Stieljes Integral: While the Lebesgue Integral allows for max-
imum generality (for the purposes of these notes), to actually compute expectations, it often
suffices to use the integrals more familiar to us. The expectation of a function g of any
random variable X with cumulative distribution function FX is calculated as E

(
g(X)

)
=∫∞

−∞ g(x) dFX(x). By definition, FX(x) =
∫ x

−∞ fX(t) dt where fX is the density function of
X. By the fundamental theorem of calculus, this means dFX(x) = fX(x) dx. In particular,
E(g(X)) =

∫∞
−∞ g(x) · fX(x) dx.

Definition 3.3. Random Variable (Simple): A random variable X is simple whenever
there are only finitely many values that X can take, that is, if there exists x1, x2, . . . , xn ∈ R
such that for all ω ∈ Ω, P(X(ω) ∈ {x1, x2, . . . , xn}) = 1.

Definition 3.4. Random Variable (Bounded): A random variable X is bounded when-
ever there exists a c ∈ R such that for all ω ∈ Ω, P(|X(ω)| < c) = 1.

Definition 3.5. Random Variable (Non-negative): A random variableX is non-negative
if for all ω ∈ Ω, P(X(ω) ≥ 0) = 1.

Definition 3.6. Expectation: The expectation of a random variable X, denoted E(X),
obeys

1. Linearity: for all random variables X, Y and constants c, E(cX + Y ) = cE(X) +E(Y ).

2. Non-negativity: if P(X > 0) = 1 then E(X) ≥ 0.

We define the calculation for E in four stages in the theorem section below: first for simple ran-
dom variables, then for bounded random variables, then for non-negative random variables,
then for general random variables. At each stage, we calculate the expectation differently,
and check that it agrees with previous calculations and meet the criteria for expectations
above. While this is a useful exercise, actually computing expectations is usually easier done
with the previous two pieces of machinery (Lebesgue and Riemann-Stieljes Integration).

Definition 3.7. Variance: The variance of a random variable X, denoted V(X), is the

value E [(X − E(X))2] = E(X2) −
(
E(X)

)2
. The square root of the variance is called the

standard deviation;
√

V(X) = σ.

Definition 3.8. Covariance: The covariance of random variables X and Y is Cov(X, Y ) =
E(XY ) − E(X)E(Y ) = E

[(
X − E(X)

)(
Y − E(Y )

)]
. This is a generalization of variance,

since V(X) = Cov(X,X). When the covariance is zero, we say the random variables are
uncorrelated.

Example 3.2: Everyone knows that “correlation doesn’t equal causation”. The reverse can
also be shown to be true. For example if X is a uniform random variable on (−1, 1), and

Y = X2 is another random variable, then E(XY ) = E(X3) =
∫ 1

−1
x3 dF (t) = 1

2

∫ 1

−1
x3 dx =

x4

8
|1−1 = 0 and by the symmetry of the support of X, E(X) = 0. So even though Y is

literally caused by X, E(XY )− E(X)E(Y ) = Cov(X, Y ) = 0.

Definition 3.9. Correlation: The correlation coefficient between random variables X and
Y is ρ(X, Y ) = Cov(X,Y )√

V(X)V(Y )
. Note ρ ∈ [−1, 1].
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Definition 3.10. Coefficient Of Determination: Where ρ(X, Y ) is the correlation be-
tween random variables X and Y , the coefficient of determination is simply it’s square;
r2 = ρ(X, Y )2. Note r2 ∈ [0, 1].

Definition 3.11. π-system: A collection of sets P from a non-empty set Ω is a pi-
system provided P is closed under finite intersection. That is, P is a pi-system if whenever

A1, A2, . . . An ∈ P we have
n⋂

i=1

Ai ∈ P .

Example 3.3: Where Ω= {1, 2, 3}, P= {∅, {1, 2} , {2, 3} , {2} , {3}} is a pi-system but not an
algebra (Definition 1.9, Page 5). It is not an algebra since, e.g., {1, 2}∪{3} = {1, 2, 3} /∈ P .

Non-example 3.1: Where Ω = {1, 2, 3}, P = {∅, {1, 2} , {2, 3} ,Ω} is not a pi-system since
{1, 2} ∩ {2, 3} = {2} /∈ P .

Definition 3.12. λ-system: A collection of sets L from a non-empty set Ω is a lambda-
system provided L is closed under compliment and countable disjoint union. That is, L is a

lambda-system if whenever A1, A2, · · · ∈ L are disjoint, we have
n⊎

i=1

Ai ∈ L and Ac
1 ∈ L.

Example 3.4: Where Ω = {1, 2, 3, 4, 5}, the set L = {∅, {1, 5} , {4, 5} , {2, 3, 4} , {1, 2, 3} ,Ω}
is a lambda-system (but not a pi-system (Definition 3.11, Page 22), since e.g., {2, 3} =
{2, 3, 4}∩{1, 2, 3} /∈ L, and not an algebra (Definition 1.9, Page 5), since e.g., {1, 5}∪{4, 5} =
{1, 4, 5} /∈ L).

Non-example 3.2: Where Ω = R, L = {(a, b) : a, b ∈ R} is a pi-system (Definition 3.11,
Page 22) but not a lambda-system. For example, (1, 2) and (3, 4) are disjoint open intervals
that are both in L, but their union is not an open interval.

Definition 3.13. Semi-Algebra: A collection of sets S from a non-empty set Ω is a semi-
algebra provided S is closed under intersection and each compliment is some finite disjoint
union from S (even if the compliment is not in S). That is, S is a semi-algebra if whenever

A1, A2, . . . , An ∈ S, we have Ai

⋂
Aj ∈ S and Ac

j =
n⊎

i=1

Ai.

Example 3.5: Where Ω= {1, 2, 3}, S= {∅, {1} , {2} , {3}} is a semi-algebra but not an algebra
(Definition 1.9, Page 5).

Non-example 3.3: Where Ω = N, S = {∅, {1} , {2} , . . . } (the set of singletons) is a pi-system
(Definition 3.11, Page 22) but not a semi-algebra since every compliment of a singleton is
an infinite union.
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3.2 Theorems And Examples

Theorem 3.1. Consequences Of Expectations:

1. Respects dominance, if P(X ≤ Y ) = 1 then E(X) ≤ E(Y ).

2. Respects equality, if P(X = Y ) = 1 then E(X) = E(Y ).

3. Triangle Inequality, |E(X)| ≤ E(|X|).

Proof. For 1, P(X ≤ Y )=1 =⇒ P(Y−X≥0)=1 =⇒ E(Y−X) ≥ 0 =⇒ E(Y )−E(X) ≥ 0.
For 2, apply the proof of 1 twice.
For 3, −|X|≤X≤|X| =⇒ E(−|X|) ≤ E(X) ≤ E(|X|) =⇒ −E(|X|) ≤ E(X) ≤ E(|X|).

Theorem 3.2. Expectations Of Simple Random Variables: Where X is a simple

random variable taking values xi, . . . , xn, E(X) =
n∑

i=1

xiP(X = xi).

Proof. The proof of this and all the below verify that the specific type of random variable
meets the definition for expectations (Definition 3.6, Page 21). So let c be any constant and
let X, Y : Ω → R be any simple random variables.

Does E(X + Y ) = E(X) + E(Y )? Label the elements in the codomain of X {x1, . . . , xn}
and the elements in the codomain of Y {y1, . . . , ym}. Then

E(X + Y ) =
l∑

k=1

zkP(X + Y = zk) Definition of simple random variable

=
n∑

i=1

m∑
j=1

(xi + yj)P(X = xi, Y = yj) Possibly many ways to get same zk

=
n∑

i=1

m∑
j=1

xiP(X = xi, Y = yj) +
n∑

i=1

m∑
j=1

yjP(X = xi, Y = yj)

=
n∑

i=1

xiP(X = xi) +
m∑
j=1

yjP(Y = yj) = E(X) + E(Y )

Does E(cX) = cE(X) for all c ∈ R? If c = 0 this is trivially true, so assume otherwise.
Then the finite list of elements in the image of X, call them x1, x2, . . . , xn remain finite upon
being multiplied by c (they are cx1, cx2, . . . , cxn). By how we defined expectation for simple

random variables, E(cX)=
n∑

i=1

cxiP(cX=cxi)=c
n∑

i=1

xiP(cX=cxi)=c
n∑

i=1

xiP(X=xi)=cE(X).

Does the definition respect non-negativity? If P(X > 0) = 1, then x1, . . . , xn are all

greater than zero. Then for every i ∈ [1, n], xiP(X = xi) ≥ 0. So E(X) =
n∑

i=1

xiP(X = xi) ≥

0. So we have verified linearity and negativity, which proves that our definition for simple
random variables fits.
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Theorem 3.3. Expectations Of Bounded Random Variables: Where Y is bounded,
use approximation and define the expected value of Y as E(Y ) = sup

Xsimple
X≤Y

E(X) = inf
Xsimple
X≥Y

E(X).

Proof. Since simple random variables are bounded, we need to make sure this definition
agrees with the definition we gave for simple random variables. If Y is simple, then by the
sup part of the equation, the expectation as defined by bounded random variables is at least
as big as the expectation as defined by simple random variables. On the other hand, by the
inf part of the equation, the expectation as defined by the bounded random variable is at
most as small as the expectation as defined by simple random variables. So the definitions
agree.

First, we must prove that the definition is valid (i.e. that the supremum and infimum
actually agree). Consider any simple random variables X1, X2 such that X1 ≤ Y ≤ X2.
Expectations respect dominance (Theorem 3.1, Page 23), so E(X1) ≤ E(X2). Since this
holds regardless of the choice of X1, X2, sup

Xsimple
X≤Y

E(X) < inf
Xsimple
X≥Y

E(X). For the other direction,

let ε > 0 be given and partition Ω into the sets Ak = {ω ∈ Ω : kε ≤ Y (ω) ≤ (k + 1)ε}.
Consider the random variable X1 =

∑
k

kε1Ak
. By the way Ω is partitioned, any ω ∈ Ω is in

exactly one Ak. So X1(ω) = kε whenever kε ≤ Y (ω) ≤ (k+1)ε (note X1 is not necessarily a
constant because the k is changing). We have X1 ≤ Y ≤ X1+ε. Further since Y is bounded,
there are only finitely many Ak’s needed to cover Ω, and thus X1 is simple. So we see our
definition is valid by taking ε to zero and observing:

sup
Xsimple
X≤Y

E(X) ≥ E(X1) X1 is a simple random variable less than Y

= E(X1 + ε)− ε Simple expectations are linear

≥ inf
Xsimple
X≥Y

E(X)− ε X1 + ε is a simple random variable greater than Y

Now that we’ve proved the definition is both valid and matches previous definitions, we
can move on to proving it meets the criteria for expectations. So let Y1 and Y2 be bounded
random variables and c ∈ R a non-zero constant.

Is E(Y1 + Y2) = E(Y1) + E(Y2)? If X1, X2 are simple random variable such that X1 ≤ Y1

and X2 ≤ Y2, then by the supremum definition and the linearity of simple expectations,
E(Y1 + Y2) ≥ E(X1 +X2) ≥ E(X1) + E(X2) ≥ E(Y1) + E(Y2). On the other hand if X1, X2

are simple random variables such that X1 ≥ Y1 and X2 ≥ Y2, then by the infimum definition
and the linearity of simple expectations, we get the reverse inequality. Is E(cY1) = cE(Y1)?
If c > 0, then E(cY1) = sup

cXsimple
cX≤cY1

E(cX) = sup
Xsimple
X≤Y1

cE(X) = c sup
Xsimple
X≤Y1

E(cX) = cE(Y1). If c < 0,

then E(cY1) = sup
cXsimple
cX≤cY1

E(cX) = sup
Xsimple
X≥Y1

cE(X) = c inf
Xsimple
X≥Y1

E(X) = cE(Y1).

Does the definition respect non-negativity? If P(Y > 0) = 1 then the constant random
variableX = 0 is simple withX ≤ Y , so E(Y ) ≥ E(X) = 0 from the supremum definition.

24



3.2 Theorems And Examples Flaherty, 25

Theorem 3.4. Expectations Of Non-Negative Random Variables: Where Z is a non-
negative random variable, use truncation and define E(Z)= sup {E(Y ) : 0≤Y≤Z, Y bounded}.

Lemma 3.4.1. If Z is non-negative, then E(Z)= lim
n→∞

E(Z ∧ n) (where Z ∧ n denotes the

minimum between Z(ω) and n).For every n, we know Z ∧ n is bounded and non-negative.
For any fixed n, (Z ∧ n) ≤ Z, and, since expectations respect dominance, E(Z ∧ n) ≤ E(Z).
Since this relationship holds for every n, lim sup

n→∞
E(Z ∧ n) ≤ E(Z). On the other hand, if

Y is a bounded, non-negative random variable such that Y ≤ Z, then we can find a m
large enough such that P (Y ≤ m) = 1. In other words, we have P ({Y ≤ Z} ∩ {Y ≤ m}) =
P (Y ≤ Z ∧m) = 1 and thus E(Y ) ≤ E(Z ∧ m). Since this relationship holds for every
n ≥ m, E(Y ) ≤ lim inf

n→∞
E(Z∧n). Taking the supremum of the Y ’s and in in conjunction with

the previous inequality, we have proved the result.

Proof. We first need to verify that this definition agrees with the definition we gave for
bounded random variables if those bounded random variables are also non-negative. If Z is
bounded and non-negative, then by the new definition, the expectation of Z is at least as
big as the old definition (because it is the supremum). On the other hand, if Y is any other
bounded non-negative random variable less than Z, then by the dominance of expectations,
E(Y ) ≤ E(Z) (in light of the old definition), and then taking the supremum of the left-hand
side, we see the expectation with the new definition is at most the expectation with the old
definition. So the definitions agree.

Now we aim to prove linearity and non-negativity. Let Z1 and Z2 be non-negative random
variables and c ∈ R+ a real constant (we can ignore the case where c < 0 since the random
variables are non-negative).

Is E(Z1 + Z2) = E(Z1) + E(Z2)? Observe E(Z1 + Z2) ≤ E(Z1) + E(Z2) since

E(Z1 + Z2) = lim
n→∞

E
(
(Z1 + Z2) ∧ n

)
By Lemma 3.4.1

≤ lim
n→∞

E
(
(Z1 ∧ n) + (Z2 ∧ n)

)
If Z1 + Z2 > n but Z1 < n and Z2 < n

= lim
n→∞

E(Z1 ∧ n) + E(Z2 ∧ n) Properties of bounded random variables

= E(Z1) + E(Z2) By Lemma 3.4.1

Now let Y1 and Y2 be bounded non-negative random variables with Y1 ≤ Z1 and Y2 ≤ Z2.
Then E(Z1 +Z2) ≥ E(Y1 + Y2) = E(Y1) +E(Y2) and taking the supremum on the right gives
E(Z1 + Z2) ≥ E(Z1) + E(Z2).

Is E(cZ) = cE(Z)? By definition, E(cZ) = sup {E(cY ) : cY ≤ cZ} where cY is bounded
and non-negative. We’ve proved that bounded random variables preserve linearity, so this
is equivalent to c sup {E(Y ) : Y ≤ Z, Y bounded and non-negative} = cE(Z) as desired. It
is clear P(Z ≥ 0) = 1 =⇒ E(Z) ≥ 0 since each Y in E(Z) = {E(Y ) : Y ≤ Z} where Y is
bounded and non-negative is itself bounded, and we already showed that bounded random
random variables preserve non-negativity. Since E(Z) is the supremum of these non-negative
expectations, E(Z) is non-negative.
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Theorem 3.5. Expectations Of General Random Variable: Where X is a general
random variable, use partitioning and define E(X) = E(X+) − E(X−) so long as the right-
hand side isn’t ∞−∞. Here, the positive part of X is denoted X+ = max {X, 0} and the
negative part of X denoted X− = max {(−X), 0}. Since both of these random variables are
non-negative, and functions of random variables are random variables, expectation here is
well defined.

Proof. Does this definition agree with previous definitions? If X is non-negative, then
P(X− = 0) = 1, so E(X) = E(X+)− 0 as desired.

For generic X and Y , does E(X + Y ) = E(X) + E(Y )? Observe:[
(X + Y )+ − (X + Y )− = (X + Y )

]
=
[
(X) + (Y ) = (X+ −X−) + (Y + − Y −)

]
(X + Y )+ +X− + Y − = X+ + Y + + (X + Y )−

E
(
(X + Y )+

)
+ E

(
X−)+ E

(
Y −) = E

(
X+
)
+ E

(
Y +
)
+ E

(
(X + Y )−

)
E
(
(X + Y )+

)
− E

(
(X + Y )−

)
= E

(
X+
)
− E

(
X−)+ E

(
Y +
)
− E

(
Y −)

E(X + Y ) = E(X) + E(Y )

For any c, is E(cX) = cE(X)? If c > 0, then E(cX) = E(cX+) − E(cX−) = c(E(X+) −
E(X−)) = cE(X). Similarly if c < 0, then E(cX) = E(cX+) − E(cX−) = −cE(X−) +
cE(X+) = c

(
E(X+)− E(X−)

)
= cE(X).

Does the definition respect non-negativity? If P(X > 0) = 1, then P(X− = 0) = 1 and
so E(X−) = 0 and we get E(X) = E(X+)− 0 ≥ 0 as desired and we’ve proved our claim.

Lemma 3.5.1. If L is both a λ-system and a π-system, then L is a σ-algebra.

Proof. We need to show L is closed under countable union (as opposed to just countable
disjoint union). So let A1, A2, · · · ∈ L be given. Consider the events A′

1 = A1, A
′
2 = A2∩Ac

1,
A′

3 = A3 ∩Ac
2 ∩Ac

1, etc. We know these events are in L as each of the compliments are in L
(since L is a lambda-system) and as each of the intersections are in L (since L is a pi-system).

Since each of these new events are disjoint, by the properties of lambda-systems,
∞⊎
i=1

A′
i ∈ L.

However by the way we defined the A′
i events,

∞⊎
i=1

A′
i =

∞⋃
i=1

Ai and we have our result.

Lemma 3.5.2. The intersection of lambda-systems is a lambda-system.

Proof. Let L1 and L2 be lambda-systems and let A1, A2, · · · ∈ L1 ∩ L2 be given. Since
Ak ∈ L1, A

c
k ∈ L1. Likewise since Ak ∈ L2, A

c
k ∈ L2. So Ac

k ∈ L1 ∩ L2; it is closed under
compliment. Likewise since the disjoint union is in both L1 and L2, it is in the intersection

Lemma 3.5.3. Where L is a lambda-system and A ∈ L, LA = {B ∈ Ω : A ∩B ∈ L} is a
lambda-system.

Proof. First see that LA is non-empty since Ω ∩ A = A ∈ L so Ω ∈ LA.
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Next see LA is closed under compliment. Consider any B ∈ LA. We want to show
Bc ∈ LA, i.e. that B

c ∩ A ∈ L. Since A ∈ L and L is a lambda-system, Ac ∈ L. Then since
Ac and A∩B are disjoint elements in L and L is a lambda-system, Ac ∪ (A∩B) ∈ L. Then(
Ac ∪ (A∩B)

)c ∈ L and by DeMorgan’s Laws, A∩ (Ac ∪Bc) = A∩Bc ∈ L. So LA is closed
under compliment.

Finally see LA is closed under countable disjoint union. Consider disjoint B1, B2, · · · ∈ LA.

We want to show
∞⊎
i=1

Bi ∈ LA. This is equivalent to showing
∞⋃
i=1

(Bi ∩ A) ∈ L. Since each

Bi ∈ LA, by the construction of LA, each (Bi∩A) ∈ L. But then since L is a lambda system

and each (Bi ∩ A) is disjoint,
∞⋃
i=1

(Bi ∩ A) ∈ L as desired and we’re done.

Theorem 3.6. Dynkin’s π-λ Theorem: If P is a pi system and L a lambda system such
that P ⊆ L, then σ(P) ⊆ L. This says that although L may fail to be a sigma-algebra, we
may be able to find a portion of L that is a sigma-algebra.

Proof. Consider a pi-system P and a lambda-system L such that P ⊆ L. Call L′ the smallest
lambda-system containing P . If we can show L′ is a sigma-algebra we will have our results
since σ(P) ⊆ L′ by the minimality of σ(P) (from the perspective of sigma-algebras) and
since L′ ⊆ L by the minimality of L′ (from the perspective of lambda-systems). By Lemma
3.5.1, it suffices to show L′ is a pi-system.

If A ∈ P ⊆ L′, then for all B ∈ P , A ∩B ∈ P ⊆ L′ by the definition of pi-system. So for
any B ∈ P , B ∈ LA, which we showed is a lambda system in Lemma 3.5.3. But L′ is the
smallest Lambda system containing P . So L′ ⊆ LA.

On the other hand, if C ∈ L′, then from the above argument, C ∈ LA and also A ⊆ LC

for every A ∈ P . So P ⊆ LC , and again by the minimality of L′, P ⊆ L′ ⊆ LC . Since
this holds for any C, from how LC is defined, for any two events X, Y ∈ L′, we must have
X ∩ Y ∈ L′ as desired.
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3.3 Problems

Problem 3.1) Let λ > 0. Recall that X is said to have a Poisson(λ) distribution

if P(X = k) = e−λλk

k!
for k ∈ {0, 1, 2, . . . }.

a. Show that E(X) = λ (For this reason, λ is called the mean parameter).

Recall the Taylor Series expansion ex =
∞∑
n=0

xn

n!
. Then using the formula for expectations:

E(X) =
∞∑
k=0

k · λ
ke−λ

k!
=

∞∑
k=0

k · λλ
k−1e−λ

k!
Goal is to put in the form of Taylor Series above

= λe−λ

∞∑
k=0

kλk−1

k!
Terms don’t depend on summand

= λe−λ

∞∑
k=1

kλk−1

k!
Limit change doesn’t alter sum

= λe−λ

∞∑
k=1

λk−1

(k − 1)!
= λe−λ

∞∑
n=0

λn

(n)!
Simplifying and substituting n = k − 1

= λe−λeλ = λ Taylor Series

b. Compute V(X).

We can compute the variance as V(X) = E(X2) − E(X)2, so first need to find E(X2).
Using a similar method as above, see that:

E(X2) = λe−λ

∞∑
k=1

k · λk−1

(k − 1)!
Same as part a with one more k term

= λe−λ

( ∞∑
k=1

(k − 1) · λk−1

(k − 1)!
+

∞∑
k=1

λk−1

(k − 1)!

)
Goal is to put in form of Taylor Series

= λe−λ

( ∞∑
k=1

λk−1

(k − 2)!
+

∞∑
k=1

λk−1

(k − 1)!

)
Simplifying

= λe−λ

(
λ

∞∑
k=2

λk−2

(k − 2)!
+

∞∑
k=1

λk−1

(k − 1)!

)
Limit change doesn’t alter sum

= λe−λ

(
λ

∞∑
n=0

λn

(n)!
+

∞∑
m=0

λm

(m)!

)
Substituting n = k − 2 and m = k − 1

= λe−λ(λeλ + eλ) = λ2 + λ

Then using part a and the variance formula, V(X) = (λ2 + λ)− λ2 = λ.
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Problem 3.2) Let X and Y be any random variables on the same probability
space. Show that E(|X+Y |) ≤ E(|X|)+E(|Y |) and E(|X−Y |) ≤ E(|X|)+E(|Y |).

For the first part, see:

|X + Y | ≤ |X|+ |Y | The regular triangle inequality

E(|X + Y |) ≤ E(|X|+ |Y |) Expectations respect dominance

E(|X + Y |) ≤ E(|X|) + E(|Y |) Expectations are linear

For the second part, see:

|X − Y | ≤ |X|+ |Y | The regular triangle inequality

E(|X − Y |) ≤ E(|X|+ |Y |) Expectations respect dominance

E(|X − Y |) ≤ E(|X|) + E(|Y |) Expectations are linear

Problem 3.3) Let Z be an integrable random variable. Show that for any ε > 0,
there exists a simple random variable X such that E(|X − Z|) ≤ ε.

Let ε > 0 be given.

Since Z is integrable, E(Z) = E(Z+) − E(Z−) with each term finite and non-negative.
From how we defined expectations for non-negative random variables, E(Z±) = sup

0≤Y≤Z
Y bounded

E(Y ).

By the definition of supremum, there exists non-negative bounded random variables Y1 and
Y2 such that Y1 ≤ Z+ and Y2 ≤ Z− and such that E(Z+) ≤ E(Y1)+

ε
4
and E(Z−) ≤ E(Y2)+

ε
4
.

In particular, E(|Z+ − Y1|) ≤ ε
4
and E(|Z− − Y2|) ≤ ε

4
.

Since Y1 and Y2 are both bounded, from how we defined expectations for bounded random
variables, E(Yi) = sup

X≤Yi
Xsimple

E(X). Then we can likewise find simple functions X1, X2 such

that E(Y1) ≤ E(X1) +
ε
4
and E(Y2) ≤ E(X2) +

ε
4
. In particular, E(|Y1 − X1|) ≤ ε

4
and

E(|Y2 −X2|) ≤ ε
4

Since X1 and X2 are random variables, so too is X = X1 −X2. Now observe that

E(|Z −X|) = E(|Z+ − Z− −X1 +X2|)
= E(|Z+ − Z− −X1 +X2 + Y1 − Y1 + Y2 − Y2|) Creatively add zero

= E(|Z+ − Y1 + Y2 − Z− + Y1 −X1 +X2 − Y2|) Reorder terms

≤ E(|Z+ − Y1|) + E(|Y2 − Z−|) + E(|Y1 −X1|) + E(|X2 − Y2|) From Problem 3.2

≤ ε

4
+

ε

4
+

ε

4
+

ε

4
= ε Desired result
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Problem 3.4) Let X be a non-negative random variable with E(X)=0. Show
P(X=0) = 1.

By the non-negative assumption of the proof, P(X < 0) = 0. Due to this assumption,
X ≥ 1

n
1{X(ω)> 1

n} for any n ∈ N. The expectation of an indicator is the probability of

the event. Then by the expectation assumption of the proof and since expectations respect
dominance and linearity, we have:

0 = E(X) ≥ E
(
1

n
1{X(ω)> 1

n}

)
=

1

n
P

(
X >

1

n

)
This inequality implies that P(X > 1

n
) = 0. Since this holds for any n ∈ N, choosing

a strictly monotone increasing sequence of n and employing continuity from below gives us
that P(X > 0) = 0. To be explicit, label A1 the event that X > 1, A2 the event that X > 1

2
,

A3 the event that X > 1
3
, etc. Then P(X > 0) = lim

n→∞
P(X > 1

n
) = P

(
∞⋃
i=1

Ai

)
= 0 where

the last equality follows from the union bound and minimality of P. Then by the law of total
probability, P(X = 0) = 1 since we have shown P(X < 0) = P(X > 0) = 0.

Problem 3.5) Prove that a probability measure is uniquely determined by what
it does on a generating π-system. Concretely, if P1 and P2 are two probability
measures on (Ω,F) such that P1(A) = P2(A) for all A ∈ P, then P1(B) = P2(B)
for all B ∈ σ(P).

Consider the set L = {B ∈ σ(P) : P1(B) = P2(B)}. By assumption of the proof, P ⊆ L
since P1(A) = P2(A) for all A ∈ P ⊆ σ(P). So if we can show L is a λ-system, we will have
σ(P) ⊆ L by the π−λ Theorem (Theorem 3.6, Page 27). By the construction of L, this will
prove our conclusion (if the measures agree on all of L, they also agree on a subset of L).

We go directly for the definition, and thus prove that L is closed under both compliment
and countable disjoint union. So let A be any set in L and A1, A2, . . . be arbitrary disjoint
sets in L. Since P1(A) = P2(A), by the law of total probability and compliment rules,
P1(A

c) = 1 − P1(A) = 1 − P2(A) = P2(A
c); L is closed under compliment. Also, by

countable additivity, P1

(
∞⊎
n=1

An

)
=

∞∑
n=1

P1(An) =
∞∑
n=1

P2(An) = P2

(
∞⊎
n=1

An

)
(the middle

equality follows since P1(Ai) = P2(Ai) for all i); L is closed under countable disjoint union.
So L is indeed a λ-system and we have our result.
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Problem 3.6) Let X and Y be integrable random variables with P(X ≤ Y ) = 1
and E(X) = E(Y ). Show that P(X = Y ) = 1.

Rearranging the probability, we have P
(
(Y − X) > 0)

)
= 1; Y − X is a non-negative

random variable. Using properties of expectations and the assumption of the proof, we
have E(X)=E(Y ) =⇒ E(Y ) − E(X)=0 =⇒ E(Y − X)=0. Then using Problem 3.4,
P(Y −X = 0) = 1 as desired.

Problem 3.7) Let X be uniformly distributed on [0, 1]. Compute the expected
value of the following random variables:

a. e5X

The Riemann-Stieljes formula is E
(
f(X)

)
=
∫∞
−∞ f(t) dFx(t). The support of X is [0, 1]

so we can reduce our problem to E
(
f(X)

)
=
∫ 1

0
f(t) dFx(t). The CDF of a uniform random

variable X is FX(t) = t =⇒ dFX(t) = 1. Here f(t) = e5x. So our problem becomes

E
(
e5X
)
=
∫ 1

0
e5t · 1 dt = 1

5
e5t
∣∣t=1

t=0
= e5−1

5
.

b. 1/X

We again use the Riemann-Stieljes formula. E( 1
X
) =

∫ 1

0
1
x
dt = lim

y→0+
ln |t||1y =0−(−∞)=∞.

c. cos(πX)

We again use the Riemann-Stieljes formula. E(cos(πt)) =
∫ 1

0
cos(πt) dt = 1

π
sin(πt)

∣∣1
0
= 0.

d. ⌊3.5X⌋
The floor function indicates the largest integer less than or equal to the value. So here

the random variable takes values 0 when 0 ≤ 7
2
X(ω) < 1 or equivalently when 0 ≤ X < 2

7
.

Likewise it takes values 1 when 1 ≤ 7
2
X(ω) < 2 or equivalently when 2

7
≤ X < 4

7
, values 2

when 2 ≤ 7
2
X(ω) < 3 or equivalently when 4

7
≤ X < 6

7
, and values 3 when 2 ≤ 7

2
X(ω) < 3

or equivalently when 6
7
≤ X ≤ 1.

Since 7
2
X is a simple random variable, we can just use the formula for expectations of

simple random variables, E(7
2
X) =

3∑
i=0

i ·P(7
2
X = i) =

2∑
i=0

(
i · 2

7

)
+
(
3 · 1

7

)
= 9

7
.

e. max(X, 2/3)

We can break up the Riemann-Stieljes formula and write E(max(X, 2
3
)) =

∫ 2
3

0
2
3
dt +∫ 1

2
3
t dt =

[
2t
3

∣∣ 23
0

]
+
[

1
2
t2
∣∣1
2
3

]
= 4

9
+ (1

2
− 4

18
) = 13

18
.
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4 Norms And Important Inequalities

4.1 Definitions

Definition 4.1. Convex: A function whose second derivative is everywhere positive. Equiv-
alently, a function f : R → R such that for all t ∈ [0, 1] and for all x, y ∈ R, we have
f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y).

Definition 4.2. Raw Moment: The nth raw moment of a random variable X is the value
E(Xn).

Definition 4.3. Central Moment: The nth central moment of a random variable X is the
value E [(X − E(X))n].

Example 4.1: The 2nd central moment is the variance (Definition 3.7, Page 21).

Definition 4.4. Standard Moment: The nth central moment of a random variable X is
the value E

[(
X−E(X)

σ

)n]
(where σ =

√
V(X), the standard deviation).

Example 4.2: The third standard moment is the skewness, which measures the symmetry
of a distribution of a random variable. A random variable that is skewed to the right (the
tail of the distribution is longer to it’s right) will have a positive skew, and a random variable
that is skewed to the left will have a negative skew.

Example 4.3: The fourth standard moment is the kurtosis, which measures how heavy-
tailed a distribution is (how likely rare events are to occur). In Problem 4.2, Page 37, we
show that the kurtosis of the distribution of a normal random variable is always 3. The
excess kurtosis measures the kurtosis of a distribution of a random variable in relation
to the normal distribution– a random variable with kurtosis greater than 3 (excess kurtosis
greater than zero) indicates that the distribution of the random variable is leptokurtic
(fatter-tailed than a normal distribution). A random variable with kurtosis less than 3
(excess kurtosis less than zero) indicates that the distribution of the random variable is
platykurtic (thinner-tailed than a normal distribution).

Definition 4.5. Moment Generating Function: The moment generating function (MGF)
for a random variable X is MX(t) = E(etX). The name of the function comes from the fact
that the nth derivative of the MGF with respect to t, evaluated at 0, is the nth raw moment.

Definition 4.6. P-norm: The p norm of a random variable X is ∥X∥p = E
(
|X|p

)1/p
. By

Jensen’s Inequality (Theorem 4.3, Page 33), if p ≤ q, then ∥X∥p ≤ ∥X∥q.

Definition 4.7. Lp Space: Fix a probability triple (Ω,F ,P). The space of random vari-
ables with finite p-norm is denoted Lp(P) = {X : Ω → R : ∥X∥p < ∞}. Since p ≤ q =⇒
∥X∥p ≤ ∥X∥q, Lp(P) ⊇ Lq(P) (the spaces get more exclusive as p grows). In that sense,
the most exclusive space is L∞. In the conditions for which X belong in L∞, define
∥X∥∞ = inf {L ≥ 0 : P(|X| ≤ L) = 1}.

Example 4.4: Where X is a random variable, V(X) < ∞ if and only if X ∈ L2(P). If

X ∈ L2(P), then E (|X|2)1/2 < ∞ =⇒ E (|X|2) < ∞ by the definition of L2. So since
E (|X|2) = E(X2), we know that V(X) = E(X2)−E(X)2 must be finite. The same reasoning
works going the other direction.
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4.2 Theorems And Examples

Theorem 4.1. Markov’s Inequality: For any integrable random variable X and for any
t, p > 0, P(|X|p ≥ t) ≤ E(|X|p)

t
.

Proof.

P(|X|p ≥ t) = E(1{|X|p≥t}) Expectation of indicator is probability of event

≤ E
(
1{|X|p≥t}

|X|p

t

)
Indicator is only one when

|X|p

t
≥ 1

≤ E
(
|X|p

t

)
Removing cases where could be zero

=
E(|X|p)

t
Linearity of expectations

Theorem 4.2. Cheyshev’s Inequality: For any random variable X ∈ L2(P) and for any

t > 0, P(|X − E(X)| ≥ t) ≤ V(X)
t2

.

Proof. Squaring the inside of the probability, we have P(|X − E(X)|2 ≥ t2). Then from

Marvov’s Inequality (Theorem 4.1, Page 33), P(|X − E(X)|2 ≥ t2) ≤ E(X−E(X))2

t2
= V(X)

t2
.

Theorem 4.3. Jensen’s Inequality: When f is convex, f
(
E(X)

)
≤ E

(
f(X)

)
for any

integrate random variable X.

Proof. Since f is convex, the left derivative at any point is no greater than the right derivative
at the point. In particular, the left derivative at E(X), call it L1 = lim

h→0+

f(E(X))−f(E(X)−h)
h

, is

less than or equal to the right derivative at E(X), call it L2 = lim
h→0+

f(E(X)+h)−f(E(X))
h

.

Let a =
(
L1+L2

2

)
and consider the real-valued function l(x) = a (x− E(X)) + f(E(X)).

See that l(x) ≤ f(x) with equality holding at x = E(X). This can be shown in cases.

Since f is convex and a is the midpoint between L1 and L2, for all h > 0, we have
f(E(X))−f(E(X)−h)

h
≤ a ≤ f(E(X)+h)−f(E(X))

h
. In the first case, x > E(X), choose h = x − E(X)

and see a(x− E(X)) ≤ f (E(X) + (x− E(X)))− f(E(X)) = f(x)− f(E(X)) and so l(x) =
a(x − E(X)) + f(E(X)) ≤ f(x). In the second case, x < E(X), choose h = E(X) − x and
the same arithmetic follows.

Since l(x) ≤ f(x) and expectations respect dominance (Theorem 3.1, Page 23), we reach
our conclusion: [E(l(X)) = E(aX − aE(X) + f(E(X))) = f(E(X))] ≤ E(f(X))

Corollary 4.3.1. Variance is always non-negative. Take f(x) = x2 which is clearly convex.
Then E(X)2 = f(E(X)) ≤ E(f(X)) = E(X2) and so V(X) = E(X2)− E(X)2 ≥ 0.
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Theorem 4.4. Holder’s Inequality: Given p ∈ [1,∞], let q be such that 1
p
+ 1

q
= 1. Then

∥XY ∥1 ≤ ∥X∥p∥Y ∥q.

Proof. If either ∥X∥p or ∥Y ∥q is zero, then so too is E(|XY |) and the result holds. So assume
∥X∥p and ∥Y ∥q are both strictly greater than zero.

Where y ≥ 0 is some fixed constant, consider a function f(x) = xp

p
+ yq

q
− xy defined

for x ≥ 0. Since f ′(x) = xp−1 − y, f has a local extrema at x = y
1

p−1 , call it x0. Since
f ′′(x) = (p− 1)xp−2 ≥ 0 (since p ≥ 1 and x ≥ 0), f(x0) is a minimum.

Further, f(x0) =
xp
0

p
+ yq

q
− x0y = y

p
p−1

p
+ yq

q
− (y

1
p−1 )y = yq

p
+ yq

q
− yq = yq(1

p
+ 1

q
)− yq = 0

since 1
p
+ 1

q
= 0 and thus 1

q
= 1− 1

p
=⇒ q = p

p−1
. As x0 is the minimum of f and f(x0) = 0,

the term being subtracted, xy, must never be greater than the terms being added, xp

p
+ yq

q
.

Now let x = |X|
∥X∥p and y = |Y |

∥Y ∥q . From the above, we see:

|X|
∥X∥p

|Y |
∥Y ∥q

≤

(
|X|

∥X∥p

)p
p

+

(
|Y |
∥Y ∥q

)q
q

1

∥X∥p∥Y ∥q
E(|XY |) ≤ E(|X|p)

p∥X∥pp
+

E(|Y |q)
q∥Y ∥qq

1

∥X∥p∥Y ∥q
∥XY ∥1 ≤

∥X∥pp
p∥X∥pp

+
∥Y ∥pp
q∥Y ∥qq

1

∥X∥p∥Y ∥q
∥XY ∥1 ≤

1

p
+

1

q

∥XY ∥1 ≤ ∥X∥p∥Y ∥q

Corollary 4.4.1. Cauchy-Schwarz: The special case of Holder’s Inequality where p = q =
2 is the Cauchy-Schwarz Inequality.

Proposition 4.1. (1 + x) ≤ ex and (1− x) ≤ e−x for all x ∈ R+.

Proof. Using Taylor Series expansion, we have (1 + x) ≤ (1 + x+ x2

2!
+ · · · ) = ex.
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Theorem 4.5. Minkowski’s Inequality: ∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p.

Proof. Recall that the Holder conjugate of p ∈ [1,∞] is the q such that 1
p
+ 1

q
= 1; i.e. q =

1
(1− 1

p
)
= 1

p−1
p

= p
p−1

. Next keep in mind the Holder inequality, that E(|XY |) ≤ ∥X∥p · ∥Y ∥q.
Returning to the problem at hand, we see the following:

E
(
|X + Y |p

)
= E

(
|X + Y | · |X + Y |p−1

)
≤ E

(
|X| · |X + Y |p−1 + |Y | · |X + Y |p−1

)
Triangle inequality on |X + Y |

= E
(
|X| · |X + Y |p−1

)
+ E

(
|Y | · |X + Y |p−1

)
Linearity of expectations

≤ ∥X∥p·∥|X + Y |p−1∥q + ∥Y ∥p·∥|X + Y |p−1∥q Holder’s Inequality on both terms

=
(
∥X∥p + ∥Y ∥q

)
· ∥|X + Y |p−1∥q Grouping terms

=
(
∥X∥p + ∥Y ∥q

)
· E
[
(|X + Y |p−1)

p
p−1

] p−1
p

The Holder conjugate q

=
(
∥X∥p + ∥Y ∥q

)
· E
(
|X + Y |p

) p−1
p Simplifying

Since p−1
p

− 1 = p−1
p

− p
p
= −1

p
, after dividing terms, we see:

1

E
(
|X + Y |p

)−1
p

≤
(
∥X∥p + ∥Y ∥q

)
=⇒ E

(
|X + Y |p

) 1
p ≤

(
∥X∥p + ∥Y ∥q

)

Theorem 4.6. AM-GM Inequality: The arithmetic mean is always at least as large as

the geometric mean. More formally, where p1, p2, . . . are real numbers such that
∞∑
i=1

pi = 1,

then for any non-negative real numbers x1, x2, . . . , we must have
∞∑
n=1

xnpn ≥
∞∏
n=1

xpn
n

Proof. Fix a n ∈ N, a set of positive real numbers Ω = {x1, x2, . . . , xn}, and a simple random
variable X : Ω → R given by X(xi) = ln(xi) with P (X = ln(xi)) = pi. Now consider the
function f(x) = ex and with the help of Jensen’s Inequality (Theorem 4.3, page 33) observe:

f
(
E(X)

)
≤ E

(
f(X)

)
Jensen’s Inequality[

eE(X) = e

n∑
i=1

ln(xi)P(X=ln(xi))

]
≤

[
E
(
eX
)
=

n∑
i=1

eln(xi) ·P(X = ln(xi))

]
How f was defined

n∏
i=1

eln(xi)pi ≤
n∑

i=1

xi · pi Properties of exponential

n∏
i=1

xpi
i ≤

n∑
i=1

xi · pi Desired result
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Theorem 4.7. Payley-Zygmund Inequality: For any non-negative random variable X

and any θ ∈ (0, 1), P(X > θE(X)) ≥ (1− θ)2 E(X)2

E(X2)

Proof. Observe:

E(X) = E(X1{X≤θE(X)}) + E(X1{X>θE(X)})

≤ θE(X) + E(X1{X>θE(X)}) Properties of indicator function

≤ θE(X) + E(X2)
1
2 · E(12{X>θE(X)})

1
2 Holder inequality

= θE(X) + E(X2)
1
2 · E(1{X>θE(X)})

1
2 Square of 0 or 1 is still 0 or 1

Then after recalling the expected value of the indicator is the probability of the event:

E(X)− θE(X) ≤ E(X2)
1
2P(X > θE(X))

1
2 Subtracting

E(X)2 − 2θE(X)2 + θ2E(X)2 ≤ E(X2)P(X > θE(X)) Square both sides

(1− θ)2
E(X)2

E(X2)
≤ P(X > θE(X)) Group for desired result
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4.3 Problems

Problem 4.1) Assume E(|X|) < ∞. Show that t 7→ E [(X − t)2] achieves a unique
minimum at t = E(X). That is, the expected value is the best deterministic
approximation of X with respect to L2 error.

Using properties of expectations, we can write E
[
(X − t)2

]
= E [X2 − 2tX − t2] =

E [X2] − E [2tX] − E [t2] = E(X2) − 2tE(X) + t2. As a function of t, this equation has
a derivative of −2E(X) + 2t. When t = E(X), the derivative is zero, and so is an extrema.
When t > 0, the derivative is positive. When t < 0, the derivative is negative. So the extrema
is a minimum and we’ve shown the result.

Problem 4.2) Compute the kurtosis of a normal random variable X with generic
parameters µ and σ2.

The moment generating function (Definition 4.5, Page 32) of a random variable Y ∼
N(0, t) is given by:

MY (u) = E(euY ) =
∫
R
euyfY (y) dy =

∫
R
euy

1√
2πt

e
−1
2

(
y2

t

)
dy

=

∫
R

1√
2πt

exp

(
uy − y2

2t

)
dy

= e
u2t
2

∫
R

1√
2πt

exp

(
uy − y2

2t
+

u2t

2

)
dy

= e
u2t
2

∫
R

1√
2πt

exp

(
uy2t

2t
− y2

2t
+

u2t2

2t

)
dy

= e
u2t
2

∫
R

1√
2πt

e
−1
2

(
(y−ut)2

t

)
dy

= e
u2t
2

Let Z = X − µ. Using the above derivation and repeated applications of the chain and
product rule, we see:

�
d
du
MZ(u) = uσ2e

u2σ2

2

�
d2

du2MZ(u) = (σ2) e
u2σ2

2 + uσ2
(
uσ2e

u2σ2

2

)
= (σ2 + u2σ4) e

u2σ2

2

�
d3

du3MZ(u) = (2uσ4) e
u2σ2

2 + (σ2 + u2σ4)
(
uσ2e

u2σ2

2

)
= (3uσ4 + u3σ6) e

u2σ2

2

�

d4

du4
MZ(u) =

(
3σ4 + 3u2σ6

)
e

u2σ2

2 +
(
3uσ4 + u3σ6

) (
uσ2e

u2σ2

2

)
=
(
3σ4 + 3u2σ6 + 3u2σ6 + u4σ8

)
e

u2σ2

2

Then the kurtosis of X is: E
[(

(X−E(X))
σ

)4]
= E

[(
d4

du4
MZ(0)

σ4

)]
= E

[
3σ4

σ4

]
= 3.
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5 Modes Of Convergence

5.1 Definitions

Definition 5.1. Convergence In Probability: A sequence of random variables Xn con-
verges in probability to a random variable X, if for any ε > 0, lim

n→∞
P(|Xn−X| < ε) = 1. We

denote this Xn
P−→ X. To be precise, Xn

P−→ X if lim
n→∞

P ({ω ∈ Ω : |Xn(ω)−X(ω)| < ε}) = 1.

Example 5.1: Consider the typewriter sequence, Xn = 1[n−2k

2k
,n+1−2k

2k

], where for every n, k

is the unique integer where 2k ≤ n < 2k+1. After X1 = 1 the first random variables are:

X2(ω) =

{
1, ω ≤ 1

2

0, else
, X3(ω) =

{
1, ω ≥ 1

2

0, else
, X4(ω) =

{
1, ω ≤ 1

4

0, else
, X5(ω) =

{
1, ω ∈

[
1
4
, 1
2

]
0, else

Then Xn
P−→ 0 since P(|Xn| ≥ ε) = P(Xn = 1) = 2−k. As n grows to infinity, k does as

well (since n < 2k+1), and so lim
n→∞

P(Xn = 1) = lim
k→∞

2−k = 0.

Non-example 5.1: The sequence Yn = 1[n mod 3
3

,1] does not converge in probability. Unlike

the typewriter sequence, the “strip” under which Yn(ω) = 1 does not shrink to zero.

Definition 5.2. Almost Sure Convergence: A sequence of random variablesXn converges
almost surely to a random variable X, denoted Xn

a.s.−−→ X, if P( lim
n→∞

Xn = X) = 1. To be

precise, this is saying Xn
a.s.−−→ X if P

({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1.

Example 5.2: Consider the “escape to vertical infinity” sequence given by Xn = n1{(0, 1n )}.
Then for every ω∈[0, 1], Xn(ω) = 0 for all n > 1

ω
, and so lim

n→∞
Xn(ω) = 0.

Non-example 5.2: The typewriter sequence (Example 5.1, Page 38) converges in probability
but not almost surely since Xn never converges to a point (e.g. for any ω ∈ Ω = [0, 1]
lim sup
n→∞

Xn(ω) = 1 but lim inf
n→∞

Xn(ω) = 0). In general, almost sure convergence is a stronger

result than convergence in probability (Theorem 5.1, Page 41).

Definition 5.3. Converges in Lp: A sequence of random variables Xn converges in Lp to

X, denoted Xn
Lp

−→ X, if X ∈ Lp(P) and lim
n→∞

∥Xn − X∥p = 0 (Definition 4.6, Page 32).

When dealing with p = 1, we may say “Xn converges in mean to X”. When dealing with
p = 2, we may say “Xn converges in mean-square to X”.

Example 5.3: Convergence in Lp does not imply almost sure convergence. Take the “type-
writer” sequence (Non-example 5.2, Page 38). We know Xn converges in mean to 0 since
lim
n→∞

∥Xn − 0∥1 = lim
n→∞

E(|Xn|) = lim
n→∞

2−k = 0 (since k is such that n < 2k+1).

Non-example 5.3: Convergence in probability (and therefore, convergence almost surely)
does not imply converge in Lp. Take the “escape to vertical infinity” (Example 5.1, Page

38). We know that if Xn
P−→ X and if Xn

Lp

−→ Y then X
a.s.
= Y . But in this example,

Xn
a.s.−−→ 0 and yet for p = 1, lim

n→∞
∥Xn − 0∥p = lim

n→∞
E(|Xn|) = lim

n→∞
n · 1

n
= lim

n→∞
1 = 1 ̸= 0.
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Definition 5.4. Convergence in Distribution (Weak Convergence): A sequence of

random variables Xn converges in distribution to a random variable X, denoted Xn
d−→ X, if

lim
n→∞

FXn(x) = FX(x) for all points x where the CDF (Theorem 1.3, Page 7) FX is continuous.

An equivalent definition is that Xn
d−→ X provided lim

n→∞
E(f(Xn)) = E(f(X)) for all bounded

and continuous f : R → R.

Example 5.4: We echo Example 2.5 and say that random variables and the distributions of
said random variables are distinct concepts– different random variables can have the same
distribution and a single random variable can have two different distributions (by changing
the probability measure relevant to the sample space). For example, where Ω = {H,T}
is the outcome of a single fair coin-flip, and where X and Y are random variables such
that X(H) = Y (T ) = 1 and X(T ) = Y (H) = 0, then X(ω) ̸= Y (ω) for all ω ∈ Ω, and

yet X
d
= Y . For this reason, convergence in distribution is substantially weaker than the

three convergence results above (convergence almost surely, convergence in probability, and
convergence in Lp). Convergence in distribution doesn’t even require random variables to
be defined on the same probability space!

Take the following example. For every n ∈ N, let (Ωn= {1, . . . , n} ,Fn=2Ωn ,P) be a
probability space where P is the uniform measure (i.e. for all ω ∈ Ωn, P(ω) =

1
n
), and let

Xn : Ωn → R be the random variable such that Xn(ω) =
ω
n
. Further consider a probability

space (Ω=[0, 1],F=B([0, 1]), P̂) where P̂ is the Lebegue Measure (Example 1.5, Page 5),

and let X : Ω → R be the random variable such that X(ω) = ω. Then Xn
d−→ X even

though each Xn is a discrete random variable and X is a continuous random variable. See

that FXn(x) =


0, x < 1

n
⌊nx⌋
n

, 1
n
≤ x < 1

1, 1 ≤ x

and FX(x) =


0, x < 0

x, 0 ≤ x < 1

1, 1 ≤ x

, which converge by the

squeeze theorem as n → ∞ (since
[
x− 1

n
= nx−1

n

]
< ⌊nx⌋

n
≤ x).

Definition 5.5. Vague Convergence: A sequence of random variables converges vaguely
if their distribution functions Fn converges to a monotone, right-continuous function F :
R → [0, 1], at all continuity points t of F . Note that F need not be a valid Cumulative
Distribution Function (it’s missing the condition that lim

n→∞
F (xn) = 1, for example).

Example 5.5: “All mass escapes to infinity”. Let (Ω = [0, 1],B([0, 1]),P([a, b])=b− a) be a
probability space, and for every n ∈ N consider the random variable Xn(ω) = n+ ω. Then
the sequence of random variables converges vaguely to F (x) = 0 since each random variable
is a uniform on a unit interval that slides further and further along the real line.

Example 5.6: “Some mass escapes to infinity”. Let (Ω = [0, 1],B([0, 1]),P([a, b]) = b−a) be

a probability space, and for every n ∈ N consider the random variableXn(ω) =

{
n, ω < 1

3

2, 1
3
≤ ω

.

Then FXn(x) =


0, x < 2
2
3
, 2 ≤ x < n

1, x ≥ n

converges vaguely to F (x) =

{
0, x < 2
2
3
, 2 ≤ x

.
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Definition 5.6. Tightness: A sequence of random variables {Xn}n∈N are tight if for all
ε > 0, there exists a, b ∈ R such that P(Xn ∈ [a, b]) ≥ 1 − ε. Equivalently, the sequence is
tight if there exists a, b ∈ R such that FXn(a) ≤ ε and FXn(b) ≥ 1− ε. Also equivalently, the
sequence is tight if there exists a M > 0 such that sup

n
P(|Xn| > M) < ε.

Example 5.7: “No mass escapes to ∞”. Let (Ω = [0, 1],B([0, 1]),P([a, b]) = b−a) be a prob-

ability space, and for every n ∈ N consider the random variableXn(ω) =

{
n, ω < 1

n

2, 1
n
≤ ω

. Then

FXn(x)=


0, x < 2

1− 1
n
, 2 ≤ x < n

1, n ≤ x

converges weakly (and thus vaguely) to FX(x)=

{
0, x < 2

1, 2 ≤ x
.

The property that this example has which Examples 5.5 and 5.6 don’t is the notion of
tightness. See a choice of a = 2 and b ≥ 1

ε
, yields P(Xn ∈ [a, b]) ≥ 1 − ε since if b ≥ n,

P(Xn ∈ [a, b]) = 1, and if b < n, P(Xn ∈ [a, b]) ≥ P(Xn = a) ≥ 1 − 1
n
≥ 1 − 1

b
≥ 1 − ε.

In general, tightness upgrades vague convergence to weak convergence (see Theorem 5.12,
page 46).
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5.2 Theorems And Examples

Theorem 5.1. Almost Sure Convergence Implies Convergence in Probability: If

Xn
a.s.−−→ X, then Xn

P−→ X. The converse is not true (Non-example 5.2, Page 38).

Proof. Since Xn
a.s.−−→ X, we have P

(
lim sup
n→∞

{ω ∈ Ω : |Xn(ω)−X(ω)| > ε}
)

= 0, i.e. the

event that for all k ∈ N there exists an n ≥ k such that |Xn(ω)−X(ω)| > ε has probability
zero. Identifying “there exists” with union, and “for all” with intersection, we have:

0 = P

(
∞⋂
k=1

∞⋃
n=k

{ω ∈ Ω : |Xn(ω)−X(ω)| > ε}

)

= lim
k→∞

P

(
∞⋃
n=k

{ω ∈ Ω : |Xn(ω)−X(ω)| > ε}

)
≥ lim

k→∞
P ({ω ∈ Ω : |Xk(ω)−X(ω)| > ε})

The first step follows from Continuity From Above (Theorem 1.1, Page 7), since for all k,(
∞⋃
n=k

{ω ∈ Ω : |Xn(ω)−X(ω)| > ε}

)
⊇

(
∞⋃

n=k+1

{ω ∈ Ω : |Xn(ω)−X(ω)| > ε}

)
The second step follows from the fact that Ak ⊆

⋃∞
n=k An.

Theorem 5.2. Convergence In Probability Implies Convergence In Distribution:

If Xn
P−→ X, then Xn

d−→ X. The converse is not true (Example 5.4, Page 39).

Proof. Pick any point t where FX is continuous and let ε > 0 be given. Observe:

FXn(t) = P(Xn ≤ t) = P(Xn ≤ t,X ≤ t+ ε) +P(Xn ≤ t,X > t+ ε)

≤ P(X ≤ t+ ε) +P(Xn ≤ t,X > t+ ε)

≤ FX(t+ ε) +P(Xn −X ≤ t−X, t−X < −ε)

≤ FX(t+ ε) +P(Xn −X ≤ −ε)

≤ FX(t+ ε) +P(|Xn −X| > ε)

Since this holds for all ε > 0, since FX is right continuous at t, and since our assumption is
that lim sup

n→∞
P(|Xn−X| > ε) = 0, lim sup

n→∞
FXn ≤ FX . Using the same setup as above, we know

FXn(t) ≥ FX(t− ε)−P (|Xn −X| > ε) and so by left continuity have lim inf
n→∞

FXn ≥ FX .

Theorem 5.3. Convergence In Lp Implies Convergence In Probability:

If ∥Xn −X∥p → 0, then Xn
P−→ X. The converse is not true (Non-example 5.3, Page 38)

Proof. Let ε > 0 be given. We want to show lim
n→∞

P(|Xn − X| ≥ ε) = 0. Since p ∈ [1,∞),

P(|Xn −X| ≥ ε) = P(|Xn −X|p ≥ εp). So by Markov’s Inequality (Theorem 4.1, Page 33),

we can write P(|Xn−X| ≥ ε) ≤ E(|Xn−X|p)
εp

. But since Xn converges in Lp, the numerator on
the right-side of the inequality becomes 0 in the limit and we’ve proven our result.
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Lemma 5.3.1. There Are Only Countably Many Discontinuity Points In A CDF:
If g : R → R is monotone, then the set of discontinuities is countable.

Proof. Without loss of generality, assume g is monotone increasing (otherwise replace the
arguments with −g). Denote the left limit of g at t as g(t−) = lim

ε→0+
g(t−ε). Similarly denote

the right limit of g at t as g(t+) = lim
ε→0+

g(t + ε). The points of discontinuity are precisely

the points where the left and right limits disagree; they are the set D = {t : g(t−) < g(t+)}.
For any s, t ∈ D with s < t, we have g(s+) ≤ g(t−), so

(
g(s−), g(s+)

)
∩
(
g(t−), g(t+)

)
= ∅.

Then
{(

g(q−), g(q+)
)
: q ∈ D

}
is a collection of disjoint intervals, each containing a distinct

rational number (since Q is dense in R). Since there are only countably many rationals, this
proves the lemma.

Theorem 5.4. Slutsky’s Theorem: If Xn
d−→ X and Yn

P−→ c where c is a real constant,

then (Xn + Yn)
d−→ X + c and XnYn

d−→ cX.

Proof. Let t be any continuity point of FX+c and ε > 0 be given. Observe that:

P(Xn + Yn ≤ t) = P(Xn + Yn ≤ t, Yn − c ≥ −ε) +P(Xn + Yn ≤ t, Yn − c < −ε)

≤ P(Xn + Yn ≤ t, Yn − c ≥ −ε) +P(Yn − c < −ε)

≤ P(Xn + c ≤ t+ ε) +P(Yn − c < −ε)

Since Yn
P−→ c, the right term vanishes as n grows large. By Lemma 5.2, we know that

there are only countably many discontinuity points, and so can send ε to zero in a way that

FX+c is continuous at the point t+ ε. So since Xn+ c
d−→ X+ c, lim sup

n→∞
FXn+Yn(t) ≤ FX+c(t).

The same type of argument shows the limit inferior and we reach our result.

Theorem 5.5. Bounded Convergence Theorem: IfXn is a sequence of random variables
converging in probability to X and there is a constant L such that P(|Xn| ≤ L) = 1 for all
n, then lim

n→∞
E(Xn) = E(X).

Proof. Let ε > 0 be given. Then observe

|E(Xn −X)|
=
∣∣E((Xn −X)1{|Xn−X|≤ε}

)
+ E

(
(Xn −X)1{|Xn−X|>ε}

)∣∣ Exactly one indicator is zero

≤ E
(∣∣(Xn −X)1{|Xn−X|≤ε}

∣∣)+ E
(∣∣(Xn −X)1{|Xn−X|>ε}

∣∣) Triangle inequality for real numbers

≤ ε+ 2L · E(1{|Xn−X|>ε}) |Xn −X| ≤ |Xn|+ |X| ≤ 2L

≤ ε+ 2L ·P(|Xn −X| > ε) Expectation of indicator is probability of event

≤ ε lim
n→∞

P(|Xn −X| ≤ ε) = 1 =⇒ lim
n→∞

P(|Xn −X| > ε) = 0

42



5.2 Theorems And Examples Flaherty, 43

Theorem 5.6. Fatou’s Lemma: If Xn is a non-negative random variable for all n ∈ N,
then lim inf

n→∞
E(Xn) ≥ E(lim inf

n→∞
Xn).

Proof. The limit inferior is a supremum of infimums. So lim inf
n→∞

Xn = sup
n≥1

inf
m≥n

Xm. For

notational ease, call Yn(ω) = inf
m≥n

Xm(ω). Then Xn(ω) ≥ Yn(ω) and so E(Xn) ≥ E(Yn)

for every n; lim inf
n→∞

E(Xn) ≥ lim inf
n→∞

(Yn). It thus suffices to prove lim inf
n→∞

(Yn) ≥ E(Y ) where

Y = lim inf
n→∞

Xn.

We do so by way of truncation (i.e. reducing the non-negative case to the bounded

case). For every L ∈ R+, lim inf
n→∞

E(Yn) ≥ lim inf
n→∞

E(Yn ∧ L). Since (Yn ∧ L)
P−→ (Y ∧ L)

([Yn = inf
m≥n

Xm] ↘ [Y = sup
n≥1

inf
m≥n

Xm] since the supremum can only grow smaller as points

in the sequence are removed) and since P(|Yn ∧ L| ≤ L) = 1, we can apply the Bounded
Convergence Theorem (Theorem 5.5, Page 42) to say lim inf

n→∞
E(Y ∧ L) = E(Y ∧ L). Taking

L to infinity and applying Lemma 3.4.1, page 25, this is precisely E(Y ).

Theorem 5.7. Monotone Convergence Theorem: If {Xn}n∈N are non-negative mono-

tonically increasing random variables such that Xn
a.s.−−→ X, then lim

n→∞
E(Xn) = E(X).

Proof. By Fatou’s Lemma (Theorem 5.6, page 43) and the convergence of Xn, lim
n→∞

E(Xn) ≥
E( lim

n→∞
Xn) = E(X).

On the other hand, since Xn is a monotonically increasing sequence of random variables,
Xn ≤ X for all n and then since expectations respect dominance, E(Xn) ≤ E(X) and so
lim sup
n→∞

E(Xn) ≤ E(X). Taken together, this proves our result.

Theorem 5.8. Dominated Convergence Theorem: If Xn converges almost surely to X
and if Z is an integrable random variable such that P(|Xn| ≤ Z) = 1 for all n ∈ N, then
E(Xn) converges to E(X)

Proof. Since Xn + Z is non-negative by assumption, Xn + Z is a non-negative random vari-
able that converges almost surely to X + Z. By Fatou’s Lemma (Theorem 5.6, page 43),
lim inf
n→∞

E(Xn+Z) ≥ E(lim inf
n→∞

Xn+Z) = E(X+Z) and after using the linearity of expectations

and canceling, we see lim inf
n→∞

E(Xn) ≥ E(X).

On the other hand, −Xn + Z is also non-negative by assumption and so we can repeat
virtually the same argument. Again by Fatou, lim inf

n→∞
E(−Xn + Z) ≥ E(lim inf

n→∞
−Xn + Z) =

E(−X+Z) and after using the linearity of expectations and canceling, we see lim inf
n→∞

E(−Xn) ≥
E(−X). This is the same as saying− lim sup

n→∞
E(Xn) ≥ −E(X) and equivalently lim sup

n→∞
E(Xn) ≤

E(X). So when seen with the above, this proves our result.
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Theorem 5.9. Conditions For Convergence In Probability: A sequence of random
variables Xn converges in probability to the random variable X if and only if every subse-
quence has a further subsequence that converges almost surely.

Proof. Assume Xn
P−→ X. We want to show the existence of a sequence {nk} such that

Xnk

a.s.−−→ X as k → ∞. By the definition of convergence in P, lim
n→∞

P(|Xn −X| ≥ ε) = 0 for

all positive ε. So choose nk such that nk > nk−1 and P(|Xnk
−X| ≥ 1

k
) ≤ 1

k2
. Then we have

∞∑
k=1

P
(
|Xnk

− X| ≥ 1
k

)
< ∞, and applying the first Borel-Cantelli Theorem (Theorem 7.1,

Page 60), P
(
|Xnk

−X| ≥ 1
k

i.o.
)
= 0, i.e. for all large k, |Xnk

−X| → 0 almost surely.

Now assume any generic sequence
{
Xnkl

}
converges almost surely and let ε > 0 be given.

We’d like to show that lim
n→∞

P
(
|Xn−X| ≥ ε

)
= 0. Call the inside of this limit pn for notational

ease. Suppose there is not convergence in probability. Then by definition, there exists a δ > 0
and a sequence {nk} such that pnk

≥ δ for all k, i.e. for all k ∈ N, P
(
|Xnk

−X| ≥ ε
)
≥ δ.

But this means that no subsequence can even converge in probability, never mind converge
almost surely. This gives us our contradiction and we’ve proved our claim.

Theorem 5.10. Skorohod’s Representation Theorem: If Xn
d−→ X, then there exists

random variables Yn and Y such that Yn
d
= Xn, Y

d
= X, and Yn

a.s.−−→ Y .

Proof. Let U ∼ Unif(0, 1). Define fXn to be the quantile function (Definition 2.7, Page 15)
for FXn and then the coupling we seek will be given by Yn = fXn(Un) and Y = fX(U). We
know that FYn = FXn and FY = FX . So all that remains to be shown is Yn

a.s.−−→ Y . Since
the quantile function is non-decreasing, we know it’s set of discontinuities, call it D, is finite
(Lemma 5.3.1, Page 42). So as P(U ∈ D) = 0, it suffices to show fXn(u) → fX(u) whenever
u /∈ D.

To do so, we can check two inequalities: lim inf
n→∞

fXn(u) ≥ fX(u) and lim sup
n→∞

fXn(u) ≤

fX(u). For the first inequality, consider any t < fX(u) where FX is continuous. Then since
t < fX(u), FX(t) < u, and since FX is continuous, fXn(t) → FX(t). Then FXn(t) < u for all
large enough n, and thus t ≤ FXn(u) for all large enough n, which proves lim inf

n→∞
fXn(u) ≥ t.

By the above lemma (Lemma 5.2, Page 42), since the points of discontinuity are countable,
we can take t arbitrarily close to f(u) and we have our desired inequality. A near identical
argument gives the second inequality.
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Lemma 5.10.1. Portmanteau Lemma: There are many equivalent definitions of weak
convergence. Here we list some of them:

� E
(
f(Xn)

)
→ E

(
f(X)

)
for all bounded Lipschitz f

� E
(
f(Xn)

)
→E

(
f(X)

)
for all bounded f such thatP(X ∈ {discontinuity points of f})=0

� lim sup
n→∞

E
(
f(X)

)
≤ E

(
f(x)

)
for all upper-semicontinuous f that is bounded from above

� lim inf
n→∞

E
(
f(X)

)
≥ E

(
f(x)

)
for all lower-semicontinuous f that is bounded from below

� lim sup
n→∞

P(Xn ∈ K) ≤ P(X ∈ K) for every closed K ⊂ R

Theorem 5.11. Equivalent Definitions Of Weak Convergence: A sequence of random
variables Xn converges weakly to X if and only if E

(
f(Xn)

)
→ E

(
f(X)

)
for all bounded and

continuous f : R → R.

Proof. Assume Xn
d−→ X, i.e. that lim

n→∞
FXn(t) = FX(t) for all t where FX is continuous.

Take Yn and Y as from Skorohod’s Theorem (Theorem 5.10, Page 44). Then for all bounded
and continuous f : R → R, f(Yn)

a.s.−−→ f(Y ) since Yn
a.s.−−→ Y and f is continuous. Then by

the Bounded Convergence Theorem (Theorem 5.5, Page 42) E
(
f(Yn)

)
→ E

(
f(Y )

)
, and by

the equality in distribution portion of Skorohod’s Theorem, E
(
f(Xn)

)
→ E

(
f(X)

)
.

Now assume E
(
f(Xn)

)
→ E

(
f(X)

)
for all bounded and continuous f : R → R. We want

to show that if t is a continuity point, then
[
P(Xn ≤ t) = E(1{Xn≤t})

]
→
[
P(X ≤ t) = E(1{X≤t})

]
(these are the definition of CDF’s). The issue is that the indicator function isn’t continuous.
So we aim to approximate the indicator with a sequence of continuous functions.

Given ε > 0, define fε(x) =


1, x ≤ t
t+ε−x

ε
, t < x ≤ t+ ε

0, t+ ε ≤ x

. As ε goes to zero, the slope of

fε between t and t + ε grows vertical; fε(x) goes to 1{x≤t}. Then since 1{Xn≤t} ≤ fε(x),
we have lim sup

n→∞
E
(
1{Xn≤t}

)
≤ lim

n→∞
E
(
fε(Xn)

)
and since fε is bounded and continuous,

lim
n→∞

E
(
fε(Xn)

)
= E

(
fε(X)

)
. Taking ε to zero, we have lim sup

n→∞
E
(
1{xn≤t}

)
≤ lim

ε→0
E
(
fε(X)

)
=

E
(
1{x≤t}

)
by the Dominated Converge Theorem (Theorem 5.8, Page 43).

For the other direction, define gε(x) =


1, x ≤ t− ε
t−x
ε
, t− ε < x < t

0, t ≤ x

. For the same rationale, as

ε goes to zero, gε(x) goes to 1{x<t}. And by the same argument for the first inequality, since
gε(x) ≤ 1{x≤t}, lim inf

n→∞
E
(
1{xn≤t}

)
≥ lim

n→∞
E
(
gε(xn)

)
= E

(
gε(x)

)
. Then taking ε to 0, again

by the Dominated Convergence Theorem, lim inf
n→∞

E
(
1{xn≤t}

)
≥ E

(
1{x<t}

)
. Then since t is a

continuity point of FX , P(X ≤ t) = P(X < t) and E
(
1{x≤t}

)
= E

(
1{x<t}

)
. In light of the

two inequalities above, we reach our conclusion, that P(Xn ≤ t) → P(X ≤ t).
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Theorem 5.12. Helly’s Selection Theorem (“No free lunch theorem”): Let {Fn}∞n=1

be a sequence of distribution functions. Then there exists a subsequence {Fnk
}∞k=1 and a right-

continuous, non-decreasing F : R → R such that Fnk
(t) → F (t) for all continuity points t of

F . If the subsequence is tight, then F is a valid CDF (so the subsequence converges weakly).

Proof. Consider any t ∈ R. Since Fn(t) ∈ [0, 1] for all n, there exists a convergent subsequence
Fnk

(t) as k → ∞. The issue is that this subsequence depends on t, but we want to use the
same subsequence for all t. So we try the diagonalization trick. Enumerate the rationals. By

the above, there exists a
{
n
(1)
k

}∞

k=1
such that F

n
(1)
k
(q1) as k → ∞. Now proceed inductively;

given (n
(l)
k )∞k=1, choose a subsequence (n

(l+1)
k )∞k=1 such that F

(l+1)
nk (ql + 1) as k → ∞. Finally,

set dk = n
(k)
k , i.e. n

(1)
1 , n

(2)
2 , n

(3)
3 , etc. Then Fdk(ql) converges as k → ∞ for all l since (dk)k≥l

is a subsequence (n
(l)
k )∞k=1. Now set F̂ (q) = lim

k→∞
Fdk(q) for all q ∈ Q. This defines a non-

decreasing F̂ : Q → [0, 1] since Fdk is non-decreasing for all k. To get the function defined

on all of R, use F (t) = inf
{
F̂ (q) : q ∈ Q, q > t

}
. So F remains non-decreasing.

Then when s ≤ t, {q ∈ Q : q > s} ⊃ {q ∈ Q : q > t} and thus F (s) ≤ F (t). F is also
right-continuous. Given ε > 0, choose rational q > t such that F̂ (q) ≤ F (t) + ε. Then
for all t′ ∈ (t, q) we have F (t) ≤ F (t′) ≤ F̂ (q) ≤ F (t) + ε. Then we conclude that F (t′)
monotonically decreases to F (t) as t′ goes to t.

Finally, we need to show that Fnk
(t) → F (t) if t is a continuity point. Let ε > 0 be given

and use continuity to find δ > 0 such that |s − t| ≤ δ (and thus |F (s) − F (t)| ≤ ε). Then
choose rationals q′, q′′ such that t − δ < q′ < t < q′′ and F̂ (q′′) ≤ F (t) + ε. Now we have
F (t)−ε ≤ F (t− δ) ≤ F̂ (q′) ≤ F̂ (q′′) ≤ F (t)+ε by the definition of F (t− δ). Since Fdk(q) →
F̂ (q) for all q ∈ Q, it follows that lim sup

k→∞
Fdk(t) ≤ lim sup

k→∞
Fdk(q

′′) = F̂ (q′′) ≤ F (t) + ε while

lim inf
k→∞

Fdk(t) ≥ lim sup
k→∞

Fdk(q
′) = F̂ (q′) ≥ F (t) − ε. Then as ε goes to 0, we conclude that

Fdk(t) → F (t) as k → ∞.

For part 2, assuming tightness, we can find a, b ∈ R such that Fn(a) ≤ ε and Fn(b) ≥ 1−ε
for all n ∈ N. Then selecting continuity points s, t of F such that s ≤ a ≤ b ≤ t, we have
F (s) = lim

n→∞
Fn(s) ≤ lim inf

k→∞
Fnk

(a) ≤ ε and F (t) = lim
n→∞

Fn(t) ≥ lim sup
k→∞

Fnk
(b) ≤ 1 − ε.

As ε was arbitrary, we conclude that lim
s→∞

F (s) = 0 and lim
t→∞

F (t) = 1. So F is a valid

distribution.
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5.3 Problems

Problem 5.1) Suppose that {Xn}∞
n=1, X, and {Yn}∞

n=1 are random variables de-

fined on the same probability space. Assume Xn
d−→ X and Yn

d−→ c where c is a

constant. Prove that Xn + Yn
d−→ X + c.

Let ε > 0 be given. The distribution function of a constant takes a value of 1 once the
constant is reached, and 0 prior to the constant being reached. So by assumption of the proof,

lim
n→∞

FYn=Fc =

{
1, x ≥ c

0, x < c
and thus lim

n→∞
P [Yn ≤ (c− ε)] = 0 and lim

n→∞
P [Yn ≤ (c+ ε)] = 1.

Equivalently, lim
n→∞

P [Yn > (c− ε)] = 1.

Intersection with a probability one event is just the original probability, so for any t ∈ R,
we have lim sup

n→∞
P
[
(Xn + Yn) ≤ (t + c)

]
= lim sup

n→∞
P
[
{Xn + Yn ≤ t+ c} ∩ {Yn > (c− ε)}

]
.

Note that if (Xn + Yn) ≤ (t + c) and if (Yn) ≥ (c − ε), then (Xn + c − ε) ≤ (t + c) and so
Xn ≤ t+ ε. Taken together, lim sup

n→∞
P
[
(Xn + Yn) ≤ (t+ c)

]
≤ lim sup

n→∞
P [Xn ≤ (t+ ε)].

We know (−∞, t+ ε] is closed, so by the Portmanteau Lemma (Lemma 5.10.1, Page 45),
lim sup
n→∞

P(Xn ≤ t+ ε) ≤ P(X ≤ t+ ε). When combined with the previous inequality, we see:

lim sup
n→∞

P
[
(Xn + Yn) ≤ (t+ c)

]
≤ lim sup

n→∞
P [Xn ≤ (t+ ε)] ≤ P(X ≤ t+ ε)

Using the same reasoning as outlined above, we also have:

lim inf
n→∞

P
[
(Xn + Yn) ≤ (t+ c)

]
≥ lim inf

n→∞
P [Xn ≤ (t− ε)] ≥ P(X ≤ t− ε)

When t is a continuity point of FX and we take ε to 0, we squeeze the lim sup/inf like so:

P(X ≤ t) = P(X ≤ t− ε) ≤ lim inf
n→∞

P
[
(Xn + Yn) ≤ (t+ c)

]
≤ lim sup

n→∞
P
[
(Xn + Yn) ≤ (t+ c)

]
≤ P(X ≤ t+ ε) = P(X ≤ t)

Since the limit superior and limit inferior agree, we can write:

lim
n→∞

P
[
(Xn + Yn) ≤ (t+ c)

]
= P(X ≤ t) = P(X + c ≤ t+ c)

As t + c is a continuity point of FX+c(x) if and only if t is a continuity point of FX(x),
this proves our result.
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Problem 5.2) Assume {Xn}∞
n=1 is a weakly convergent sequence of random vari-

ables. Show that this sequence is tight.

A sequence of random variables are tight if for all ε > 0, there exist a, b ∈ R such that
Fi(a) ≤ ε and Fi(b) ≥ 1− ε where Fi are distribution functions.

So let ε > 0 be given and choose continuity points a∗ and b∗ such that F (a∗) ≤ ε
2
and

F (b∗) ≥ (1 − ε
2
). By assumption, Fn(a

∗) → F (a∗) and Fn(b
∗) → F (b∗). Then by definition,

there exists an N ∈ N such that for all n > N , Fn(a
∗) ≤ ε and Fn(b

∗) ≥ (1− ε).

For any n < N , we can choose values an, bn such that Fn(an) ≤ ε and Fn(bn) ≥ (1 − ε).
Call a = min {a1, . . . , aN , a∗} and b = min {b1, . . . , bN , b∗}. Then for all n ≥ 1, Fn(a) ≤ ε and
Fn(b) ≥ (1− ε).

Problem 5.3) Let (Ω,F ,P) be a probability space such that P(A) ∈ {0, 1} for
every A ∈ F . Prove that every random variable on this space is an almost sure
constant. That is, show that for any measurable function X : Ω → R, there
exists a a ∈ R such that P(X = a) = 1.

Consider the set (−∞, k) in the Borel sigma-algebra of R. Since X is measurable,
X−1

(
(−∞, k)

)
∈ F . By assumption of proof, we can say

P

(
X−1

(
(−∞, k)

))
= P

(
{ω ∈ Ω : X(ω) ≤ k}

)
= P(X ≤ k) = FX(k) ∈ {0, 1}

where FX is understand to mean the cumulative distribution function of X. Since
lim

n→−∞
FX(n) = 0, lim

n→∞
FX(n) = 1, and Fx is monotone, there exists values a, b ∈ R such

that a = sup {x ∈ R : FX(x) = 0} and b = inf {x ∈ R : FX(x) = 1}.

If a < b, then there would exist a c ∈ R such that a < c < b. Then by the construction
of a and b and by the monotonicity of FX , 0 = Fx(a) < FX(c) < FX(b) = 1, a contradiction
to FX ∈ {0, 1}. So a = b.

Now let ε > 0 be given. We have:

P
(
(a− ε) ≤ X ≤ (a+ ε)

)
Would like this to be 1

=P
(
X ≤ (a+ ε)

)
−P

(
X ≤ (a− ε)

)
Breaking up inequality

=FX(b+ ε)− FX(a− ε) Definition of CDF and a = b

= 1− 0 = 1 How a and b were constructed

Since this holds for all ε > 0, we must have P(X = a) = 1 as desired.
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Problem 5.4) Show that if X1, X2, . . . are non-negative, E
(

∞∑
i=1

Xi

)
=

∞∑
i=1

E(Xi).

For all finite n, E(X1 + X1 + · · · + Xn) = E(X1) + E(X2) + · · · + E(Xn) by linearity of
expectations. Define a sequence of random variables by Y1 = X1, Y2 = Y1+X2, Y3 = Y2+X3,

etc. Then P
(
lim
n→∞

Yn =
∞∑
i=1

Xi

)
= 1. Since each Xi is non-negative, Yi ≤ Yi+1 for every i; the

sequence is monotone increasing. So we have a non-negative sequence of random variables
that converges almost surely and we can use the monotone convergence theorem (Theorem

5.7, Page 43) to say lim
n→∞

E(Yn) = E
( ∞∑

i=1

Xi

)
. This proves the claim.

Problem 5.5) Let X be a nonnegative random variable. Show that there is a
sequence of nonnegative simple random variables {Xn}n≥1 such that Xn ↗ X
as n → ∞.

Consider the sequence of random variables given by Xn(ω) = min
{

1
2n
⌊2n ·X(ω)⌋, n

}
.

For every n in the sequence and any ω ∈ Ω, Xn(ω) = 0 when 2n · X(ω) < 1. Similarly,
whenever X(ω) > n, Xn(ω) = n. Since each Xn is non-negative, the sequence is bounded
by these values, 0 ≤ Xn ≤ n. Then by inspection, the floor function can take on values
0, 1, . . . , n · 2n to stay within the bounds. In other words, Xn(ω) ∈

{
0, 1

2n
, 2
2n
, . . . , n

}
; each

random variable in the sequence is simple since it can only take on finitely many values.

Consider a random variable in this sequence X and an element ω ∈ Ω. Observe that
2⌊2n ·X(ω)⌋ ≤ ⌊2 ·2n ·X(ω)⌋ = ⌊2n+1 ·X(ω)⌋ (the inequality is only an equality when X(ω) is

an integer). Then dividing both sides of the inequality by 2n+1, we see ⌊2n·X(ω)⌋
2n

≤ ⌊2n+1·X(ω)⌋
2n+1 .

Since the right-most part of the minimum is n < n+1, this proves the sequence is monotone
increasing.

We prove the sequence of random variables converges to X with the squeeze theorem. At
any n,

[
Xn(ω) = min

{
1
2n
⌊2n ·X(ω)⌋, n

}]
≤ min

{
⌊ 1
2n

· 2n ·X(ω)⌋, n
}
≤ min {X(ω), n}. On

the other hand
[
Xn(ω) = min

{
1
2n
⌊2n ·X(ω)⌋, n

}]
≥ min

{
X(ω)− 1

2n
, n
}
. Then taking both

limits we see lim
n→∞

min {X(ω), n} = X(ω) = lim
n→∞

X(ω)− 1
2n

= lim
n→∞

min
{
X(ω)− 1

2n
, n
}
.

Problem 5.6) Assume Xn
P−→ X and that there is an integrable random variable

Y where Xn ≤ Y for each n. Show that lim
n→∞

E(Xn) = E(X).

Let {nk}∞k=1 be a sequence of positive integers. Since Xn
P−→ X, we must have Xnk

P−→ X
as well. Then by the properties of convergence in probability, there is a further subsequence
Xnkl

a.s.−−→ X. Since each Xnkl
is bounded by Y , by the Bounded Convergence Theorem

(Theorem 5.5, Page 42), lim
n→∞

E(Xnkl
) = E(X). Then because every subsequence has a

further convergent subsequence, the full sequence converges.
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Problem 5.7) Let {Xn}n≥1 be a sequence of random variables such that Xn ↗ X

almost surely and E(X−
1 ) < ∞. Prove that E(Xn) ↗ E(X).

Consider the sequence of random variables given by Yn = Xn+X−
1 . By the monotonicity

of the Xi’s,
[
Yn = Xn +X−

1

]
≤
[
Yn+1 = Xn+1 +X−

1

]
; {Yn}n∈N is monotone increasing.

Again by the monotonicity of the Xi’s,
[
Yn = Xn +X−

1

]
≥ X1 +X−

1 = X+
1 ≥ 0; {Yn}n∈N

is non-negative.

Since Xn ↗ X almost surely,
[
Yn = Xn +X−

1

]
↗
[
X +X−

1

]
almost surely. So {Yn}n∈N is

a monotonically increasing non-negative sequence that converges almost surely. We can then
apply the monotone convergence theorem and linearity of expectations to reach our result.

P
(
lim
n→∞

E(Yn) = E(X +X−
1 )
)
= 1 Monotone Convergence Theorem

P
(
lim
n→∞

E(Xn +X−
1 ) = E(X +X−

1 )
)
= 1 How Yn was defined

P
(
lim
n→∞

E(Xn) + E(X−
1 ) = E(X) + E(X−

1 )
)
= 1 Linearity of expectations since E(X−

1 ) < ∞

P
(
lim
n→∞

E(Xn) = E(X)
)
= 1 Desired result

Problem 5.8) Let X be an integrable random variable on the measurable space
(Ω,F). Show that for any ε > 0, there exists a δ > 0 such that the following
implication is true: A ∈ F , P (A) ≤ δ =⇒ E(|X|1A) ≤ ε.

Let ε > 0 be given. First note that for any ω ∈ Ω and any n ∈ N, the random variable

1{|X(ω)|>n}(ω) =

{
1, |X(ω)| > n

0, |X(ω)| ≤ n
goes to zero almost surely as n grows large. Further since

|X|1{|X|>n} ≤ |X| and |X| is integrable by the assumption of the proof, we can use the
Dominated Convergence Theorem (Theorem 5.8, Page 43) to show E

(
|X|1{|X|>n}

)
goes to

zero in the limit (and in particular that we can choose an n such that E
(
|X|1{|X|>n}

)
≤ ε

2
).

With ε > 0 and n ∈ N in mind, consider δ = ε
2n
. Then observe

E
(
|X|1A

)
= E

(
|X|1{A∩|X|≤n} + |X|1{A∩|X|>n}

)
= E

(
|X|1{A∩|X|≤n}

)
+ E

(
|X|1{A∩|X|>n}

)
Linearity of expectations

≤ E(n1A) + E
(
|X|1{A∩|X|>n}

)
|X| ≤ n if indicator isn’t zero

= nP(A) + E
(
|X|1{A∩|X|>n}

)
Expectation of indicator is probability of event

= nδ +
ε

2
By assumption and how we chose n

= n · ε

2n
+

ε

2
Desired result
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6 Independence

6.1 Definition

Definition 6.1. Sigma-Algebra Generated By Random Variables: The sigma-algebra
generated by a sequence of random variables {Xi}i∈I is the smallest sigma-algebra containing
σ(Xi) for all i; σ({Xi}i∈I) = σ

( ⋃
i∈I

σ(Xi)
)
. Here, σ(X) = {{ω ∈ Ω : X(ω) ∈ B} : B ∈ B(R)}.

Example 6.1: Consider a sample space whose sets indicate the outcome of three fair coin
flips (e.g. AHTT denotes a head followed by two tails). Further consider the random variable
S2(ω) which returns the number of heads that come up after the first two flips. It is an easy
exercise to find the pre-images that belong to each borel set. For example, {S2 ∈ {2}} =
{AHHH , AHHT} = AHH and {S2 ∈ [1, 2]} = {AHH ∪ AHT ∪ ATH} = Ac

TT .

In total, σ(S2) =

{
∅,Ω, AHH , ATT , AHT ∪ ATH ,

Ac
HH , A

c
TT , AHH ∪ ATT

}
, which is a substantially different

sigma-algebra than F2 =


∅,Ω, AH , AT ,

AHH , AHT , ATH , ATT ,
AC

HH , A
C
HT , A

C
TH , A

C
TT ,

AHH ∪ ATT , AHH ∪ ATH , AHT ∪ ATT , AHT ∪ ATH

.

For example, AHT ∈ F2 but AHT /∈ σ(S2). This is because only knowing the value of S2

(e.g. that S2(ω) = 1) does not allow one to distinguish if the initial flip was a head or tail
(just that there was one total head in the first two flips). Since F2 has enough information
to determine the value of S2, we say that S2 is F2-measurable (Definition 2.1, Page 12).

Definition 6.2. Tail σ-Algebra: Where {Xi}i∈I is a sequence of random variables, the

tail sigma algebra is denoted T =
∞⋂
n=1

σ(Xn+1, Xn+2, . . . ). The idea is that the Tail σ-algebra

is the collection of events whose occurrence is unaffected when finitely many of the random
variables are changed.

Example 6.2: The set A =
{
lim
i→∞

Xi Exists
}
is in the tail sigma-algebra. Intuitively, this is

because removing any finite number of elements does not change the limit. More formally,
we recall from real analysis that a limit exists if and only if it is Cauchy. The definition
of Cauchy convergence is that for any ε > 0, there exists a N ∈ N such that whenever
i, j > N , it must be the case that |Xi − Xj| < ε. Since this holds for all ε > 0, we can
pick a particular element k ≥ 1, and get the result that |Xi − Xj| ≤ 1

k
. Using the usual

method of converting qualifiers to unions (there exists) and intersections (for all), A can be
expressed as

⋂
k≥1

⋃
N≥1

⋂
i≥N

⋂
j≥N

{
|Xi −Xj| ≤ 1

k

}
.

Non-example 6.1: The set C =

{
sup
i≥1

Xi ≥ 5

}
is not in the tail sigma-algebra. For example,

the first random variable could be doing all the lifting (e.g. is a constant 6), and removing
it would change the supremum of the sequence (if all the other random variables, were, e.g.
a constant 4).
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Definition 6.3. Independence (Of Events): A finite set of events A1, A2, . . . , An is mu-
tually independent if for all I ⊆ {1, . . . , n} we have P

(⋂
i∈I Ai

)
=
∏
i∈I
P(Ai). We say

A1, A2, . . . , An are pairwise independent if for all i ̸= j, P(Ai ∩ Aj) = P(Ai)P(Aj). Note
that mutual independence implies pairwise independence, but not vise-versa. Infinite collec-
tion of events are independent when any finite subset of the events are independent.

Example 6.3: Take Ω = {1, 2, 3, 4}, F = 2Ω, and P(A) = |A|. Then consider events
A = {1, 4}, B = {2, 4}, and C = {3, 4}. These are pairwise independent but not mutually
independent since P(A ∩ B) = P({4}) = 1

4
= 1

2
· 1
2
= P(A) · P(B) (the same results hold

for the other two intersections), but P(A ∩ B ∩ C) = P({4}) = 1
4
̸= 1

8
= 1

2
· 1

2
· 1

2
=

P(A) ·P(B) ·P(C).

Non-example 6.2: Independence isn’t transitive. Take Ω = {1, 2, . . . , 20}, F = 2Ω, and
P(A) = |A|. Then consider events A = {1, 2, . . . , 10}, B = {1, 3, 12, 13}, and C =
{3, 4, . . . , 12}. We see A∩B ∩C = {3}, so P(A∩B ∩C) = 1

20
= 1

2
· 1
5
· 1
2
= P(A)P(B)P(C).

We also see A ∩ B = {1, 3} and B ∩ C = {3, 12}, so P(A ∩ B) = 1
10

= 1
2
· 1
5
= P(A)P(B)

and likewise P(B ∩ C) = 1
10

= 1
5
· 1

2
= P(B)P(C). But A ∩ C = {3, 4, . . . , 10} so

P(A ∩ C) = 2
5
̸= 1

2
· 1
2
= P(A)P(C).

Definition 6.4. Independence (Of Sigma Algebras): A finite collection of sigma-
algebras {Fi}i∈I is independent if for every Ai ∈ Fi, {Ai}i∈I is independent. Note that
this specifically is not saying anything about events within any one sigma-algebra (i.e the
events within a sigma-algebra may not be independent, see example), but rather is saying
that selecting one event from each sigma-algebra results in independence.

Example 6.4: Take (Ω,F ,P) where Ω = {1, 2, 3, 4}, F = 2Ω, and P(A) = |A|. Consider
the sigma-algebras F1 = {∅,Ω, {1, 2} , {3, 4}} and F2 = {∅,Ω, {1, 3} , {2, 4}}. We see that
the two sigma-algebras are independent (and may write F1⊥F2) since the two non-trivial
sets in F1 share precisely one element with the two non-trivial sets in F2. For example,
P({1, 2} ∩ {1, 3}) = P({1}) = 1

4
= 1

2
· 1
2
= P({1, 2}) · P({1, 3}) and P({1, 2} ∩ {2, 4}) =

P({2}) = 1
4
= 1

2
· 1
2
= P({1, 2}) ·P({2, 4}).

Non-example 6.3: Take (Ω,F ,P) where Ω = {1, 2, 3, 4}, F = 2Ω, and P(A) = |A|. Consider
the sigma-algebras F1 = {∅,Ω, {1, 2} , {3, 4}} and F2 = {∅,Ω, {1, 2, 3} , {4}}. These two
sigma-algebras aren’t independent. For example, P({1, 2} ∩ {1, 2, 3}) = P({1, 2}) = 1

2
̸=

1
2
· 3
4
= P({1, 2}) ·P({1, 2, 3}).

Definition 6.5. Independence (Of Random Variables): A finite collection of random
variables {Xi}i∈I is independent if {σ(Xi)}i∈I (Definition 2.4, Page 13) is independent. For
two random variables, this is equivalent to checking that P(X ≤ t1, Y ≤ t2) = FX(t1)FY (t2).

Non-example 6.4: If S2 denotes the number of heads in the first 2 tosses of a fair coin and S1

denotes the number of heads in the first flip of a fair coin, then S2 and S1 aren’t independent.
Informally, knowing the value of S1 influences the knowledge of S2 (for example, if S1 = 0,
S2 ̸= 2). More formally take AH ∈ σ(S1) and AHH ∈ σ(S2). Then P(AH ∩ AHH) =
P(AHH) =

1
4
̸= 1

8
= 1

2
· 1
4
= P(AH) ·P(AHH).
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6.2 Theorems And Examples

Theorem 6.1. Information Is Lost Through Composition: Where f : R → R is a
measurable function, X is a random variable, and σ(X) is the sigma-algebra generated by
the random variable, σ

(
f(X)

)
⊆ σ(X). In particular, if X and Y are independent, then

f(X) and f(Y ) are independent.

Proof. Take any S ∈ σ(f(X)). Then by definition, there exists a B ∈ B(R) such that
S = (f ◦ X)−1(B) = X−1(f−1(B)). Since f is measurable by assumption, f−1(B) ∈ B(R)
(the sigma-algebra associated with the domain of f). So, there is a D ∈ B(R) (namely
f−1(B)) such that S = X−1(D); S ∈ σ(X).

Theorem 6.2. Equivalent Definitions of Independent Random Variables: If X
and Y are independent random variables whose expectations are defined, then E(XY ) =
E(X)E(Y ). This result extends to multiple independent random variables, but the converse
is not true (see Example 3.2, Page 21). Additionally, we must have the joint distribution,
joint MGF, and joint density factor as well.

Proof. First, we assumeX and Y are simple, i.e. X(ω) ∈ {x1, . . . , xn} and Y (ω) ∈ {y1, . . . , ym}.
Define the events Ai = X−1({xi}) and Bj = Y −1({yj}) for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Then clearly X(ω) =
n∑

i=1

xi1{Ai}(ω) and Y (ω) =
m∑
j=1

yj1{Bi}(ω). We then have:

E(XY ) = E

((
n∑

i=1

xi1{Ai}

)(
m∑
j=1

yj1{Bi}

))

= E

(
n∑

i=1

m∑
j=1

xiyj1{Ai}1{Bi}

)
Grouping

=
n∑

i=1

m∑
j=1

xiyjE
(
1{Ai}1{Bi}

)
Linearity

=
n∑

i=1

m∑
j=1

xiyjE
(
1{Ai}

)
E
(
1{Bi}

)
Ai ⊥ Bj

=
n∑

i=1

xiE
(
1{Ai}

) m∑
j=1

yjE
(
1{Bi}

)
Grouping

= E(X)E(Y )

The third step follows since X and Y are independent, and so every Ai and Bj are as
well. It is easy to see that indicator functions of independent events are independent, since
E(1{Ai}1{Bj}) = E

(
1{Ai∩Bj}

)
= P(Ai ∩Bj) = P(Ai)P(Bj) = E(1{Ai})E(1{Bj}).

Next, we assumeX and Y are non-negative. Consider the function fn(t) = min
{

1
2n
⌊2nt⌋, n

}
and call Xn = fn(X) and Yn = fn(Y ). Since fn is measurable, σ(Xn) = σ(fn(X)) ⊆ σ(X)
and σ(Yn) = σ(fn(Y )) ⊆ σ(Y ) (Theorem 6.1, Page 53). Due to the independence of X and
Y , this means that Xn and Yn are independent for every n.
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Since Xn and Yn are simple random variables (they can only take on n2n different val-
ues due to the bound of n and the discretization of size 1

2n
) that are independent, we can

use the above argument to see E(XnYn) = E(Xn)E(Yn). Further, since Xn and Yn are
increasingly better approximations of X and Y (the floor function ensures that for every
ω, X(ω) is no more than 1

2n
larger than Xn(ω)), 0 ≤ Xn ↗ X and 0 ≤ Yn ↗ Y (as n

grows large, the difference X(ω)−Xn(ω) ≤ 1
2n

becomes arbitrarily small). So 0 ≤ XnYn ↗
XY , and applying the Monotone Convergence Theorem (Theorem 5.7, Page 43), we have
lim
n→∞

E(XnYn) = E(XY ). Applying the same theorem to Xn and Yn individually, we have

lim
n→∞

E(XnYn) = lim
n→∞

E(Xn)E(Yn) = lim
n→∞

E(Xn) lim
n→∞

E(Yn) = E(X)E(Y ).

Finally, we assumeX and Y are integrable. Each ofX+ = min {X, 0},X− = min {−X, 0},
and Y ± is non-negative and a function of X and Y ; we can again apply Theorem 6.1 to say
every combination of X± is independent of every combination of Y ±. Then observe:

E(XY ) = E
((
X+ −X−) (Y + − Y −)) Definition

= E
(
X+Y + −X+Y − −X−Y + +X−Y −) Grouping

= E
(
X+Y +

)
− E

(
X+Y −)− E

(
X−Y +

)
+ E

(
X−Y −) Linearity

= E
(
X+
)
E
(
Y +
)
−E

(
X+
)
E
(
Y −)−E

(
X−)E (Y +

)
+E

(
X−)E (Y −) Independence

= E(X+)
[
E(Y +)− E(Y −)

]
− E(X−)

[
E(Y +)− E(Y −)

]
Grouping

=
[
E(X+)− E(X−)

] [
E(Y +)− E(Y −)

]
= E(X)E(Y ) Grouping

Lemma 6.2.1. Let {Xi}i∈I be a collection of independent random variables and define

P =

{⋂
i∈I

Ai : Ai ∈ σ(Xi)

}
. Then P is a pi-system.

Proof. If A,B ∈ P , then A ∩B =

( ⋂
i∈I1

Ai

)
∩
( ⋂

i∈I2
Bi

)
=
⋂
i∈I

(Ai ∩Bi).

Lemma 6.2.2. Let {Xi}i∈I be a collection of independent random variables and define

P =

{⋂
i∈I

Ai : Ai ∈ σ(Xi)

}
. Then σ(P) = σ

(
{Xi}i∈I

)
, call it G.

Proof. Consider any A ∈ P . By definition, A =
⋂
i∈I

Ai where each Ai ∈ σ(Xi) (and thus

also an element of G). Since sigma-algebras are closed under intersection, we have A ∈ G
and thus P ⊆ G. Since σ(P) is the smallest sigma-algebra containing P , and since G is a
sigma-algebra, we therefore have σ(P) ⊆ G. Now consider any fixed i ∈ I. If B ∈ σ(Xi),
then B ∈ P ⊆ σ(P) (to see this, just take Aj = Ω for every j ̸= i in the intersection;⋂
i∈I

Ai = B ∩
⋂

j ̸=i,j∈I
Aj). Since this holds for every i ∈ I and since sigma-algebras are closed

under unions, we have
⋃
i∈I

σ(Xi) ⊆ σ(P). Since G = σ

(⋃
i∈I

σ(Xi)

)
is the smallest sigma-

algebra containing
⋃
i∈I

σ(Xi), and since σ(P) is a sigma-algebra, we have G ⊆ σ(P) and have

proved σ(P) = G.
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Lemma 6.2.3. Let (Ω,F ,P) be a probability space. Suppose P1, . . . ,Pn ⊆ F are π-systems
such that for any A1 ∈ P1, . . . , An ∈ Pn, the collection {Ai}∞i=1 is independent. Prove that
σ(P1), . . . , σ(Pn) are independent.

Proof. Fix anyA2 ∈ P2, . . . , An ∈ Pn. Define L = {B ∈ F : {B,A2, . . . , An} is independent}.
If we can show L is a lambda-system, then since P1 is a pi-system contained in L by as-
sumption, σ(P1) ⊂ L by the Pi-Lambda Theorem (Theorem 3.6, Page 27). Then we would
have Ai, A2, . . . , An are independent for any Ai ∈ σ(P1). Since σ(P1) is a pi-system, we can
repeat this argument replacing P2 with σ(P2), P3 with σ(P3), etc. So all we need to do is
show that L is a lambda-system.

Let B ∈ L and I ⊆ {2, . . . , n} be given. To show L is closed under compliment, we need

to show that P
(
Bc ∩

⋂
i∈I

Ai

)
= P (Bc)

∏
i∈I P (Ai). Note that we check I for any subset of

{2, . . . , n} instead of just the entirety of {2, . . . , n} because we need to show it is mutually
independent. Then observe:

P

(
Bc ∩

⋂
i∈I

Ai

)
= P

(⋂
i∈I

Ai

)
−P

(
B ∩

⋂
i∈I

Ai

)
Everything in ∩i∈A not in B

=
∏
i∈I

P(Ai)−P(B)
∏
i∈I

P(Ai) By assumption

=
(
1−P(B)

)∏
i∈I

P(Ai) Grouping terms

= P(Bc)
∏
i∈I

P(Ai) Desired result

To show L is closed under countable disjoint union, let B1, B2, . . . be disjoint events in L
and call B =

⊎∞
i=1Bi. Then observe that:

P

(
B ∩

⋂
i∈I

Ai

)
= P

(
∞⊎
i=1

Bi ∩
⋂
i∈I

Ai

)
How B is defined

= P

[
∞⊎
i=1

(
Bi ∩

⋂
i∈I

Ai

)]
If B1, B2 disjoint, then A ∩B1 and A ∩B2 disjoint

=
∞∑
i=1

P

(
Bi ∩

⋂
i∈I

Ai

)
Properties of disjoint union

=
∞∑
i=1

P(Bi)
∏
i∈I

P(Ai) Independence assumption

= P

(
∞⊎
i=1

Bi

)∏
i∈I

P(Ai) Properties of disjoint union

= P(B)
∏
i∈I

P(Ai)
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Lemma 6.2.4. Let {Xi}i∈I be a collection of independent random variables. Let I1 and I2
be two disjoint subsets of I. Then σ

(
{Xi}i∈I1

)
= G1 is independent of σ

(
{Xi}i∈I2

)
= G2.

Proof. In the spirit of Lemma 6.2.1 and Lemma 6.2.2, we can define P1 =

{ ⋂
i∈I1

Ai : Ai ∈ σ(Xi)

}
and P2 =

{ ⋂
i∈I2

Ai : Ai ∈ σ(Xi)

}
. By Lemma 6.2.1, P1 and P2 are pi-systems. By Lemma

6.2.2, σ(P1) = G1 and σ(P2) = G2. Then applying Lemma 6.2.3, σ(P1) = G1 is independent
of σ(P2) = G2.

Theorem 6.3. Kolmogorov’s 0-1 Law: Let {Xi}∞i=1 be independent random variables
and T the associated tail algebra. Then for all A ∈ T , either P(A) = 0 or P(A) = 1.

Proof. Since the Xi’s are independent, by Lemma 6.2.4 we have σ (X1, . . . , Xn) independent
of σ (Xn+1, . . . ) for any n ∈ N. By the definition of tail-algebra, T ∈ σ (Xn+1, . . . ) and so

σ (X1, . . . , Xn) is independent of T . Since this holds for all n, we have
∞⋃
n=1

σ (X1, . . . , Xn)

independent of T . But again by the definition of tail-algebra, T ∈
∞⋃
n=1

σ (X1, . . . , Xn). So

T is independent of itself. In particular, any event A ∈ T is independent of itself. That is,
P(A) = P(A ∩ A) = P(A)P(A) and so P(A) ∈ {0, 1}.
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6.3 Problems

Problem 6.1) Let (Ω,F ,P) be a probability space and consider events A,B ∈ F .
Show that A and B are independent if and only if 1A and 1B are independent
random variables.

Recall that random variables are independent if and only if the sigma-algebra generated by
the random variables are independent. Here σ(1A) =

{
1
−1
A (B) : B ∈ B(R)

}
= {∅, A,Ac,Ω}

(this was shown on another homework). Similarly, σ(1B) = {∅, B,Bc,Ω}. For the sigma-
algebras to be independent, we need each event in one sigma-algebra, call the event Ai, to
be independent from each event in the other sigma-algebra, call the event Bj; P(Ai ∩Bj) =
P(Ai)P(Bj).

Assume A and B are independent, i.e. P(A∩B) = P(A)P(B). Then proceed one-by-one
through the cases.

� If Ai = ∅, then P(∅ ∩Bj) = P(∅) = 0 = 0 ·P(Bj) = P(∅)P(Bj) for all Bj ∈ B

� If Ai = Ω, then P(Ω ∩Bj) = P(Bj) = 1 ·P(Bj) = P(Ω)P(Bj)

� If Ai = A, then there we can assume Bj = Bc (the reverse argument for the points
above give cases where Bj = ∅ and where Bj = Ω, and we have assumed the case where
Bj = B in the proof). Then P(A ∩ Bc) = P(B) − P(A ∩ B) = P(B) − P(A)P(B) =
P(B)

(
1−P(A)

)
= P(B)P(Ac)

� if Ai = Ac, then we can assume Bj = Bc and use the same argument as above.

On the other hand, if the sigma-algebras are independent, then a choice of A ∈ σ(1A)
and a choice of B ∈ σ(1B) shows us that A and B are independent. This proves our result.
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Problem 6.2) Show that covariance is bilinear, i.e. for any random variables
X1, . . . , Xn and Y1, . . . , Ym and any constants α1, . . . , αn and β1, . . . , βm ∈ R,
that Cov

( n∑
i=1

αiXi,
m∑

j=1

βjYj

)
=

n∑
i=1

m∑
j=1

αiβjCov(Xi, Yj), provided Xi, Yj, and XiYj

are integrable for each i, j.

The covariance of random variablesX and Y is Cov(X, Y ) = E
[(
X − E(X)

)(
Y − E(Y )

)]
=

E(XY )− E(X)E(Y ). So by linearity of expectations, we see:

Cov

( n∑
i=1

αiXi,

m∑
j=1

βjYj

)
= E

[(
n∑

i=1

αiXi − E
( n∑

i=1

αiXi

))( m∑
j=1

βjYj − E
( m∑

j=1

βjYj

))]

= E

[(
n∑

i=1

αiXi −
n∑

i=1

αiE
(
Xi

))( m∑
j=1

βjYj −
m∑
j=1

βjE
(
Yj

)))]

= E

[
n∑

i=1

αi

(
Xi − E(Xi)

) m∑
j=1

βj

(
Yj − E(Yj)

)]

= E

[
n∑

i=1

m∑
j=1

αiβj

(
Xi − E(Xi)

)(
Yj − E(Yj)

)]

=
n∑

i=1

m∑
j=1

αiβjE
[(
Xi − E(Xi)

)(
Yj − E(Yj)

)]
=

n∑
i=1

m∑
j=1

αiβjCov(Xi, Yj)

Problem 6.3) Show that if X1. . . . , Xn are uncorrelated, then V
( n∑
i=1

Xi

)
=

n∑
i=1

V(Xi) provided E(X2
i ) < ∞ for each i.

V
( n∑

i=1

Xi

)
= Cov

( n∑
i=1

Xi,
n∑

j=1

Xj

)
Definition of Variance

=
n∑

i=1

n∑
j=1

Cov(Xi, Xj) From Problem 6.2

=
n∑

i=1

Cov(Xi, Xi) Ignore cases where i ̸= j since Cov(Xi, Xj) = 0

=
n∑

i=1

V(Xi) Desired result
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7 Law Of Large Numbers

7.1 Definitions

Definition 7.1. Identically Distributed: Two random variables X and Y are identically
distributed if P(X ∈ B) = P(Y ∈ B) for all B ∈ B(R). Equivalently, we can check if P(Xi ≤
t) = P(X1 ≤ t) for all t ∈ R (equivalent by taking B = (−∞, t]). Another equivalence is
E
(
f(Xi)

)
= E

(
f(X1)

)
for all measurable f and all i ≥ 1 provided the expectations exist

(equivalent by using the push-forward formula in the above).

Example 7.1: Consider random variables X ∼ Bern(0.5) and Y = 1 − X. Then X and
Y are identically distributed (they are both fair coin flips, with “heads” counted as 1 and
“tails” as 0), but not independent (X literally causes Y ; XY is always 0, so E(XY ) = 0 ̸=
E(X)E(Y ) = 1

2
1
2
= 1

4
).

Non-example 7.1: Consider random variables X and Y where X models a coin flip and Y
models a dice role. Then X and Y are independent (XY has 12 possible outcomes, 6 of

which are 0, so E(XY ) = 1
2
1
6

6∑
n=1

n = 21
12

= E(X)E(Y ) = 1
2
21
6
), but not identically distributed

(for example, X does not even take the value 2).

Example 7.2: Consider random variables X and Y which are two independent copies of a
normal random variable. Then X and Y are both independent and identically distributed.
When random variables are both independent and identically distributed, we may abbreviate
them as iid.

Definition 7.2. Infinitely Often: If (Ω,F ,P) is a probability space and if {Ai}∞i=1 is a se-

quence of events in F , then Ai occurs infinitely often if P

(
∞⋂
n=1

⋃
i≥n

Ai

)
= 1. Identifying inter-

section with “for all” and union with “there exists”, this is saying “for all n ∈ N, there exists
an i ≥ n such that Ai occurs with probability 1”, which is precisely the definition of lim sup;

P

(
∞⋂
n=1

⋃
i≥n

Ai

)
= 1 ⇐⇒ P

(
lim sup

i→∞
Ai

)
= P ({ω ∈ Ω : ω ∈ Ai for infinitely many i}) = 1.

We will often abbreviate this to P (Ai i.o.) = 1.

Definition 7.3. Eventually Always: If (Ω,F ,P) is a probability space and if {Ai}∞i=1 is a

sequence of events in F , then eventually, Ai will always occur if P

(
∞⋃
n=1

⋂
i≥n

Ai

)
= 1. Identi-

fying union with “there exists” and intersection with “for all”, this is saying “there exists an
n ∈ N such that for all i ≥ n, Ai occurs with probability 1”, which is the definition of lim inf;

P

(
∞⋃
n=1

⋂
i≥n

Ai

)
= 1 ⇐⇒ P

(
lim inf
i→∞

)
= P ({ω ∈ Ω : ω ∈ Ai for all large enough i}) = 1.

While not universal notation, we may abbreviate this to P (Ai e.a.) = 1.
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7.2 Theorems And Examples

Theorem 7.1. Borel-Cantelli: If {Ai}∞i=1 is a sequence of events that satisfy
∞∑
i=1

P(Ai)<∞,

then P(Ai i.o.) = 0; i.e. only finitely many of the Ai’s occur.

As a partial converse, if {Bi}∞i=1 is a sequence of independent events (independence is not

needed in the first part of the theorem), such that
∞∑
i=1

P(Bi) = ∞, then P(Bi i.o.) = 1.

Proof. For the first part of Borel-Cantelli, label A′
n =

⋃
i≥n

Ai for every n. As n increases,

events are removed from the union; A′
n ⊇ A′

n+1 ⊇ A′
n+2 ⊇ · · · . Then by continuity from above

(Theorem 1.1, Page 7), P

(
∞⋂
n=1

⋃
i≥n

Ai

)
= P

(
∞⋂
n=1

A′
n

)
= lim

n→∞
P (A′

n) = lim
n→∞

P

(⋃
i≥n

Ai

)
. For

any fixed n in the limit, we can use the union bound (Theorem 1.1, Page 7) to show that the

probability is no more than
∑
i≥n

P(Ai); P

(
∞⋂
n=1

⋃
i≥n

Ai

)
= lim

n→∞
P

(⋃
i≥n

Ai

)
= lim

n→∞

∑
i≥n

P(Ai).

Since the infinite sum is less than infinity by assumption, so too is the tail, and we’ve proved
our result.

For the second part of Borel-Cantelli, we want to show P(Bi i.o.) = 1 or equivalently
P (Bi i.o.

c) = 0. See that:

P

([
∞⋂
n=1

⋃
i≥n

Bi

]c)
= P

([
∞⋃
n=1

⋂
i≥n

Bc
i

])
DeMorgan’s Laws

= P

(
∞⋃
n=1

B′
n

)
After calling B′

n =
⋂
i≥n

Bc
i , so B′

n ⊆ B′
n+1 ⊆ · · ·

≤
∞∑
n=1

P(B′
n) Union bound (Theorem 1.1, Page 7)

It suffices to show P(B′
n) = 0 for all n. See that:

P(B′
n) = lim

n→∞
P
(⋂
i≥n

Bc
i

)
Continuity from above (Theorem 1.1, Page 7)

=
∏
i≥n

(
1−P(Bi)

)
By independence and compliment rules

≤
∏
i≥n

e−P(Bi) Using the inequality in Lemma 4.1, Page 34

= e
−

∞∑
i=n

P(Bi)
Product of exponentials is exponential of sums

= e−∞ = 0 By assumption of the proof
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Example 7.3: If you flip a one-sided die followed by flipping a two-sided die, followed by
flipping a three-sided die, etc. then the probability that a one is rolled infinitely often is one.
This follows from Borel-Cantelli’s second theorem since on a uniform probability measure,

P(Xn = 1) = 1
n
, and

∞∑
n=1

1
n
= ∞

Non-example 7.2: If you roll a one-sided die, followed by flipping a four-sided die, followed
by flipping a nine-sided die, etc. then the probability that a one is rolled infinitely often is
zero (i.e. there is a last time a 1 is rolled). This follows from Borel-Cantelli’s first theorem

since on a uniform probability measure, P(Xn = 1) = 1
n2 and

∞∑
n=1

1
n2 = π2

6
< ∞.

Proposition 7.1. L4 Strong Law Of Large Numbers: The sample mean of independent
Xi ∈ L4(P) converges almost surely to the true mean. More precisely, if {Xi}∞i=1 is a sequence

of i.i.d. random variables such that E(X4
i ) ≤ c < ∞, then

(
X = 1

n

n∑
i=1

Xn

)
a.s.−−→ E(X).

Proof. Without loss of generality, assume E(X) = 0 (if not, replace Xi with Xi − E(X)).

Label Sn =
n∑

i=1

Xi so that S4
n =

(
n∑

i=1

Xi

)4

=
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

XiXjXkXl =
n∑

i,j,k,l

XiXjXkXl. By

linearity of expectations, E(S4
n) =

n∑
i,j,k,l

E(XiXjXkXl), a sum with n4 terms.

Since the random variables are mutually independent, whenever i, j, k, l are distinct,
E(XiXjXkXl) = E(Xi)E(Xj)E(Xk)E(Xl) = 0. Similarly, whenever i ̸= j ̸= k, terms in
the form E(X3

i Xj) factor as E(X3
i )E(Xj) = E(X3

i ) · 0 = 0 and terms in the form E(X2
i XjXk)

factor as E(X2
i )E(Xj)E(Xk) = 0. So only terms in the form E(X4

i ) and E(X2
i X

2
j ) contribute

to the sum.

There are
(
n
1

)
= n terms in the form E(X4

i ) and
(
n
2

)(
4
2

)
= 4!

2!2!
n!

2!(n−2)!
= 3n(n− 1) terms in

the form E(X2
i X

2
j ). This follows since there are

(
n
2

)
ways to choose pairs (i, j) as our index

in E(X2
i X

2
j ), and, once the (i, j) pair is determined, there are

(
4
2

)
distinct permutations

(e.g., E(XiXiXjXj) = E(XiXjXiXj)) since fixing the location of the i terms determines the
location of the j terms.

So our sum is E(S4
n) = nE(X4

i ) + 3n(n− 1)E(X2
i X

2
j ) which, by assumption of the proof,

is no more than nc+3n(n− 1)E(X2
i X

2
j ). Since E(X2

i X
2
j ) = E(|X2

i X
2
j |), by Cauchy-Schwartz

(Theorem 4.4.1, Page 34), E(X2
i X

2
j ) ≤ E(|X2

i |2)
1
2E(|X2

j |2)
1
2 =

√
E(X4

i )E(X4
j ) =

√
c2 = c,

and our bound becomes E(S4
n) ≤ nc+ 3n(n− 1)c = (3n2 − 2n)c ≤ 3n2c.

Now let ε > 0 be given. Then P(Sn

n
≥ ε) = P(S4

n ≥ n4ε4) ≤ E(S4
n)

n4ε4
= 3n2c

n4ε4
= 3c

ε4
1
n2 by

Markov’s Inequality (Theorem 4.1, Page 33) and the previously established bound. So we

have
∞∑
n=1

P
(
Sn

n
≥ ε
)
= 3c

ε4

∞∑
n=1

1
n2 = 3c

ε4
π2

6
< ∞. By the second Borel-Cantelli Lemma (Theorem

7.1, Page 60), P
(
Sn

n
≥ ε i.o.

)
= 0. Since this holds for all ε > 0, Sn

n

a.s.−−→ 0 and we have proven
our result.
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Lemma 7.1.1. Conditions For Almost Sure Convergence: A sequence of random
variables Xn converges almost surely to X if P(|Xn − X| ≤ ε for all large n) = 1 for all
ε > 0.

Proof. By definition, Xn
a.s.−−→ X if for all ε > 0, there exists an N ∈ N such that for all

n ≥ N , P (|Xn −X| ≤ ε) = P

(
∞⋃

N=1

∞⋂
n=N

|Xn −X| ≤ ε

)
= 1. Since this holds for all ε > 0,

this must also hold for all 1
k
> 0. So Xn

a.s.−−→ X if P

(
∞⋂
k=1

∞⋃
N=1

∞⋂
n=N

|Xn −X| ≤ 1
k

)
= 1. Label

the event
∞⋃

N=1

∞⋂
n=N

|Xn −X| ≤ 1
k
as Ak. If P(Ak) = 1 for all k, then P

(
∞⋂
k=1

Ak

)
= 1. So to

prove almost sure convergence, it suffices to show P (|Xn −X| ≤ ε for all large n) = 1

Proposition 7.2. Law Of Large Numbers For Infinite Expectation: If {Xi}∞i=1 is
a sequence of i.i.d. random variables such that E(Xi) = ∞, then the probability that the
sample mean exists and is finite is 0.

Proof. We know that E(|X1|) =
∫∞
0
P(|X1| ≥ t) dt ≤

∫∞
0
P(|X1| ≥ ⌊t⌋) dt =

∞∑
n=0

P(|X1| ≥

n) =
∞∑
n=0

P(|Xn| ≥ n). Since E(|Xn|) = ∞,
∞∑
n=0

P(|Xn| ≥ n) = ∞ as well. Then by the second

Borel-Cantelli Lemma (Theorem 7.1, Page 60), P(|Xn| ≥ n i.o.) = P( |Xn|
n

≥ 1 i.o.) = 1.

Label the event that lim
n→∞

n∑
i=1

Xi

n
exists and is finiteA. We claim thatA∩

{
|Xn|
n

≥ 1 i.o.
}
=∅.

If this claim is true, then since P(
{

|Xn|
n

≥ 1 i.o.
}
) = 1, we must have P(A) = 0. So we focus

our aim on proving the claim.

Call Sn =
n∑

i=1

Xn. Observe
∣∣∣Sn

n
− Sn−1

n−1

∣∣∣ = ∣∣∣Sn−1+Xn

n
− Sn−1

n−1

∣∣∣ = ∣∣∣Xn

n
− Sn−1

n(n−1)

∣∣∣ ≥ |Xn|
n

− |Sn−1|
n(n−1)

by the reverse triangle inequality. If A occurs, then
∣∣∣Sn

n
− Sn−1

n−1

∣∣∣ → 0 as n grows large (by

Cauchy criteria for limits). On the other hand, if both A and
{

|Xn|
n

≥ 1 i.o.
}

occur, then

lim sup
n→∞

|Xn|
n

− Sn−1

n(n−1)
= lim sup

n→∞

|Xn|
n

≥ 1. But this violates the above inequality.
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Theorem 7.2. Strong Law Of Large Numbers: Let {Xj}∞j=1 be a sequence of iid random

variables such that −∞ < E(X1) = µ < ∞. Then
n∑

j=1

Xj

n

a.s.→ µ.

Proof. First, we reduce to the non-negative case. Since Xj=X+
j −X−

j and X+
j =max(Xj, 0)

are iid, it suffices to show that
X+

1 +X+
2 +···+X+

n

n

a.s.−−→ E(X+
1 ) and

X−
1 +X−

2 +···+X−
n

n

a.s.−−→ E(X−
1 ) as

doing so would imply X1+X2+···+Xn

n

a.s.−−→ E(X+
1 ) − E(X−

1 ) = E(X1). So henceforth we can
assume that Xj ≥ 0.

Second, we can truncate the random variables. Call Yj = Xj1{Xj≤j}. Then see that
∞∑
j=1

P(Xj > j) =
∞∑
j=1

P(X1 > j) ≤
∫∞
0
P(X1 ≥ t) dt = E(X1) < ∞ by assumption of the

proof. Then using Borel-Cantelli (Theorem 7.1, Page 60), we have P(Xj > j i.o.) = 0. In
other words, P(Xj ≤ j) = 1 for all large j and thus Yj = Xj for all large j. So if we define
Sn = X1 +X2 + · · ·+Xn and Tn = Y1 + Y2 + · · ·+ Yn, then Sn − Tn is finite with probability
1, and further lim sup

n→∞

∣∣Sn−Tn

n

∣∣ = 0 almost surely.

Third, we can apply Chebyshev’s Inequality (Theorem 4.2, Page 33). For any ε > 0,

we have P(|Tn−E(Tn)
n

| ≥ ε) = P(|Tn − E(Tn)| ≥ nε) ≤ V(Tn)
ε2n2 . We can further bound the

probability as P(|Tn−E(Tn)
n

| ≥ ε) ≤ V(Tn)
ε2n2 ≤ E(X2

11{X1≤n})

nε2
after observing:

V(Tn) =
n∑

j=1

V(Yj) ≤
n∑

j=1

E(Y 2
j ) By independence and variance formula

=
n∑

j=1

E(X2
j 1{Xj≤j}) ≤

n∑
j=1

E(X2
j 1{Xj≤n}) How Yj was defined and j ≤ n

= nE(X2
11{X1≤n}) Since the Yj’s are identically distributed

Fourth, we can examine subsequences in the form nk = ⌊αk⌋ for some α > 1. By the
bound established above and the knowledge that 1

2
αk ≤ nk ≤ αk, we have:

∞∑
k=1

P

(∣∣∣∣Tnk
− E(Tnk

)

nk

∣∣∣∣ ≥ ε

)
≤

∞∑
k=1

E(X2
11{X1≤nk})

ε2nk

≤
∞∑
k=1

E(X2
11{X1≤αk})
1
2
ε2αk

Note that for all x ∈ R,
∞∑
k=1

1{x≤αk}
αk =

∑
k:αk≥x

1
αk ≤ x−1

1−α−1 since the sum is a geometric series

with a common ratio of α−1 and first term less than x−1. So using linearity of expectations
and the assumption of the proof, we can continue to examine the sum as follows:

∞∑
k=1

E(X2
11{X1≤αk})
1
2
ε2αk

=
2

ε2
E
( ∞∑

k=1

X2
11{X1≤αk}

αk

)
≤ 2

ε2
E
(

X1

1− α−1

)
=

2µ

ε2(1− α)−1

In particular, this bound is finite, and we can thus use the first Borel-Cantelli Theorem

(Theorem 7.1, Page 60) to say that P
(∣∣∣Tnk

−E(Tnk
)

nk

∣∣∣ ≥ ε i.o.
)
= 0. Since ε was arbitrary,
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this means that
Tnk

−E(Tnk
)

nk

a.s.−−→ 0. Further, since we have assumed each Xj is positive and
since we know lim

j→∞
Yj = lim

j→∞
Xj1{Xj≤j} = X1, we can apply the Monotone Convergence

Theorem (Theorem 5.7, Page 43) to conclude that lim
j→∞

E(Yj) = E(X1) = µ. From how we

defined Tn, we have E(Tn) = E(Y1) + E(Y2) + · · · + E(Yn) =⇒ E(Tn)
n

= 1
n

n∑
i=1

E(Yi)
a.s.−−→ µ.

Combined with the argument that lim
k→∞

Tnk
−E(Tnk

)

nk

a.s.
= 0, this means lim

k→∞

Tnk

nk

a.s.
= µ and so,

from our second step, lim
n→∞

|Sn−Tn

n
| a.s.
= 0 =⇒ Snk

nk

a.s.−−→ µ.

Finally, we can use interpolation. Since we have assumed Xi ≥ 0, we know that {Sn}∞n=1

is non-decreasing. As such, given some n, there is a k such that nk ≤ n ≤ nk+1 and

consequently
Snk

nk+1
≤ Sn

n
≤ Snk+1

nk
=⇒ nk

nk+1

Snk

nk
≤ Sn

n
≤ Snk+1

nk+1

nk+1

nk
. We have already shown

Snk

nk

a.s.−−→ µ and know nk+1

nk

a.s.−−→ α since nk = ⌊αk⌋. So in the limit, the aforementioned

inequality becomes 1
α
µ ≤ lim inf

n→∞
Sn

n
≤ lim sup

n→∞

Sn

n
≤ αµ. Since this holds for all α ≥ 1,

we can take a monotonically decreasing sequence αk ↘ 1 and then with probability 1 we

have µ
αk

≤
[
lim inf
n→∞

Sn

n
≤ lim sup

n→∞

Sn

n

]
≤ αkµ. Since this holds for all k in our sequence, we

have µ = lim
k→∞

µ
αk

≤
[
lim inf
n→∞

Sn

n
≤ lim sup

n→∞

Sn

n

]
≤ lim

k→∞
αkµ = µ. This sandwich proves that

lim
n→∞

Sn

n
= µ almost surely.
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7.3 Problems

Problem 7.1) Let {Xi}∞
i=1 be iid Exponential(1) random variables, i.e. P(Xi ≥

x) = e−x for x ≥ 0. Let Mn = max1≤i≤n Xi.

a. Show that P
(
lim sup
n→∞

Xn/ ln(n) = 1
)
= 1.

For all ε > 0, we have:

∞∑
n=1

P

(
Xn

ln(n)
≥ (1 + ε)

)
=

∞∑
n=1

P
(
Xn ≥ ln(n)(1 + ε)

)
=

∞∑
n=1

e− ln(n)(1+ε) =
∞∑
n=1

1

n1+ε
< ∞

Then by the first Borel-Cantelli Theorem, P
(

Xn

ln(n)
≥ (1 + ε) i.o.

)
= 0, and in particular

lim sup
n→∞

Xn

ln(n)
≤ (1 + ε) almost surely. Since this is true for every ε > 0, it must be the case

that lim sup
n→∞

Xn

ln(n)
≤ 1 almost surely.

On the other hand, we have:

∞∑
n=1

P

(
Xn

ln(n)
≥ 1

)
=

∞∑
n=1

P
(
Xn ≥ ln(n)

)
=

∞∑
n=1

e− ln(n) =
∞∑
n=1

1

n
= ∞

Then since the random variables are independent, by the second Borel-Cantelli Theorem,
P
(

Xn

ln(n)
≥ 1 i.o.

)
= 1, and in particular lim sup

n→∞

Xn

ln(n)
≥ 1 almost surely. This proves both

directions.

b. Show that P
(
lim inf
n→∞

Mn/ ln(n) ≥ 1
)

= 1. As a hint, use the fact that
∞∑

n=1

e−n1−c
< ∞ for any c < 1.

For all ε > 0, we have:

∞∑
n=1

P

(
Mn

ln(n)
< (1− ε)

)
=

∞∑
n=1

P (Mn < ln(n)(1− ε))

=
∞∑
n=1

P (X1 < ln(n)(1− ε))n Independence and definition of maximum

=
∞∑
n=1

(
1− e−(ln(n)(1−ε)

)n
=

∞∑
n=1

(
1− 1

n1−ε

)n

Identical distributions and simplifying

≤
∞∑
n=1

e−n1−ε

< ∞

So by the first Borel-Cantelli Theorem, P
(

Mn

ln(n)
≤ (1 − ε) i.o.

)
= 0 and in particular

lim inf
n→∞

Mn

ln(n)
≥ 1.
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Problem 7.2) Let {Xn}∞
i=1 be any sequence of random variables. Show that there

exists a sequence of constants {cn}∞
n=1 such that 1

cn
Xn

a.s.−−→ 0.

Let ε > 0 be given. Then we see

∞∑
n=1

P

(
Xn

cn
≥ ε

)
=

∞∑
n=1

P
(
Xn ≥ cnε

)
=

∞∑
n=1

1−P
(
Xn < cnε

)
=

∞∑
n=1

1− FXn(cnε)

where FXn is understood to be the cumulative distribution function of Xn. Then a choice
of cn = n (eventually) forces FXn(cnε) ≥ (1− 1

n2 ) since lim
t→∞

FXn(t) = 1 and since ε is positive.

Then using this sequence, we have (for some k):

∞∑
n=1

P

(
Xn

cn
≥ ε

)
=

∞∑
n=1

1− FXn(cnε) ≤
k∑

n=1

1− FXn(cnε) +
∞∑

n=k+1

1

n2
≤ k +

∞∑
n=k+1

1

n2
< ∞

Then since
∞∑
n=1

P

(
Xn

cn
≥ ε

)
< ∞, we use the first Borel-Cantelli Theorem to say that

P
(
Xn

cn
≥ ε i.o.

)
= 0 and in particular that P

(
lim
n→∞

Xn

cn
< ε
)
= 1. Since this holds for all

ε > 0, we must have P
(

lim
n→∞

Xn

cn
= 0
)
= 1 as desired.

Problem 7.3) Let {An}∞
n=1 be a sequence of independent events such thatP(An) <

1 for all n and such that P(
∞⋃
i=1

Ai) = 1. Show that P(An i.o.) = 1.

By the second Borel-Cantelli Theorem, since {An}∞n=1 are independent, if we can show

that
∞∑
n=1

P(An) = ∞, then we will have P(An i.o.) = 1. If lim sup
n→∞

P(An) > 0, then clearly

we have this result. So we can assume that lim sup
n→∞

P(An) = 0.

First notice that P(
∞⋃
n=1

An)=1 =⇒ P

(( ∞⋃
n=1

An

)c)
= 0 =⇒ P

( ∞⋂
n=1

Ac
n

)
=

∞∏
n=1

P(Ac
n) = 0

by DeMorgan’s Laws and the independence assumption. Then applying the negative natural

log to both sides, we have − ln(0) = − ln

(
∞∏
n=1

P(Ac
n)

)
=⇒ ∞ =

∞∑
n=1

− ln (P(Ac
n)) =

∞∑
n=1

− ln (1−P(An)) =
∞∑
n=1

ln
(

1
1−P(An)

)
.

We have proved earlier that for any real number x, 1 + x ≤ ex. In particular, for any

y < 1 we have
[
1 +

(
y

1−y

)
= 1

1−y

]
≤ e

y
1−y . Applying this to the equality obtained above,

we have ∞ =
∞∑
n=1

ln
(

1
1−P(An)

)
≤

∞∑
n=1

ln
(
e
P(An)

1−P(Ai)

)
=

∞∑
n=1

P(An)
1−P(An)

=
∞∑
n=1

1
1−P(An)

P(An). Then

since lim sup
n→∞

P(An) = 0, lim
n→∞

1
1−P(An)

= 1 and we see
∞∑
n=1

P(A)n = ∞ as desired.
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Problem 7.4) Without appealing to the Strong Law Of Large Numbers, prove the
weak L2 law of large numbers (“Weak” refers to convergence in probability as
opposed to almost sure convergence, and L2 refers to the assumption of bounded
variance.). Assume X1, . . . , Xn are uncorrelated random variables with E(Xi) =
µ for every i, and V(Xi) ≤ C for every i, where C is some finite constant. Define
Sn = X1 + · · · + Xn. Show that Sn/n converges to µ in probability as n → ∞.

Let ε > 0 be given. It is easy to show that since the random variables are uncorrelated;
the sum of their variances is the variance of their sums. Upon multiplying by 1

n
, we see

that V(
n∑

i=1

1
n
Xi) = V( 1

n

n∑
i=1

Xi) =
1
n2V(

n∑
i=1

Xi) ≤ 1
n2nC ≤ C

n
. Then by Chebyshev’s inequality,

P
(
|Sn

n
− µ| ≥ ε

)
≤ V(Sn/n)

ε2
≤ C/n

ε2
= C

nε2
n→∞−−−→ 0.
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8 Central Limit Theorem

8.1 Definitions

Definition 8.1. Characteristic Function: The characteristic function of a random vari-
able X is φX(t) = E(eitX). This is essentially the Fourier Transform for random variables.

Example 8.1: Let X be a binary random variable that takes the values ±1 (these are called
Rademacher Random Variables), each with probability 1

2
. Label the support of X as x0,

x1. Then the characteristic function of X is calculated as:

E(eitX) =
∞∑
k=0

eitxkP(X = xk) =
1∑

k=0

eitxkP(X = xk) = eit(−1)1

2
+ eit(1)

1

2

=
1

2
(cos(−t) + i sin(−t)) +

1

2
(cos(t) + i sin(t))

=
1

2
(cos(−t) + cos(t)) +

1

2
(sin(−t) + sin(t)) = cos(t) sine is odd, cosine is even

Example 8.2: After recalling the Taylor Expansion for ex, we calculate the characteristic
function for X ∼ Poi(λ) as:

E(eitX) =
∞∑
k=0

eitxkP(X = xk) =
∞∑
k=0

eitxke−λλ
k

k!
= e−λ

∞∑
k=0

(λeit)k

k!
= e−λeλe

it

= eλ(e
it−1)

Definition 8.2. Laplace Transform: The laplace transform of a random variable X is
LX(t) = E(e−tX).

Definition 8.3. Complex Modulus: Where z and w are complex numbers, a and b are real
numbers, and i is the complex unit, recall the following facts about complex numbers (the
proofs of which follow from Taylor Series expansions and elementary results from calculus).

1. eitx = cos(tx) + i sin(tx)

2. ea+bi=eaebi. The distance from the origin is ea=r and the angle from the origin is ebi=θ.

3. where | · | denotes the complex modulus, |eitx| = |a+ bi| =
√
a2 + b2

4. |wz| = |w| · |z|
5. |ez| = e|z|
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8.2 Theorems And Examples

Lemma 8.0.1. Properties of Characteristic Functions: For independent random vari-
ables X and Y and constants c, we have

1. φX+Y (t) = E(eit(X+Y )) = E(eitx)E(eitY ) = φX(t)φY (t)

2. φX+c(t) = E(eit(x+c)) = E(eitX)E(eitc) = eitcφX(t)

3. φcX(t) = E(eitcX) = E(ei(ct)X) = φX(ct)

4. φX(0) = E(ei·0·X) = 1

5. φ
(n)
X (0) = inE(Xn) (can recover moments, see theorem below (Theorem 8.1, Page 69))

Lemma 8.0.2. Exchanging derivatives and exponents: If f : (R×R) → C is continu-
ously differentiable in t and there exists a g such that | ∂

∂t
f(t,X)| ≤ g(X) for all t ∈ R with

E
(
g(X)

)
< ∞, then t 7→ E

(
f(t,X)

)
is differentiable and d

dt
E
(
f(t,X)

)
= E

(
∂
∂t
f(t,X)

)
.

Proof.

d

dt
E
(
f(t,X)

)
= lim

h→0

E
(
f(t+ h,X)

)
− E

(
f(t,X)

)
h

Limit definition of derivative

= lim
h→0

E
(
f(t+ h,X)− f(t,X)

h

)
Linearity of expectations

= lim
h→0

E
(

∂

∂t
f(c,X)

)
Existence of t < c < t+ h is by Mean-Value Theorem

= E
(

∂

∂t
f(t,X)

)
Dominated Convergence Theorem (Theorem 5.8, Page 43)

Where the last inequality follows by assumption of the proof (there is an integrable g(X) such
that | ∂

∂t
f(t,X)| ≤ g(X) for all t ∈ R with probability one) and the definition of derivative

( ∂
∂t
f(c,X)

a.s.→ ∂
∂t
f(t,X) as h → 0).

Theorem 8.1. Derivatives Of Characteristic Functions: If E(|X|n) < ∞, then φ has
n continuous derivatives and φ(n)(t) = E

(
(ix)neitX

)
. In particular φ(n)(0) = E

(
inXne0

)
=

inE(Xn), so we can recover the nth raw moment of a random variable from finding the nth

derivative of it’s characteristic function at zero.

Proof. We have dn

dtn
eitX = (iX)neitX . So if E(|X|n) < ∞, applying Lemma 8.0.2 n times gives

the result.
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Lemma 8.1.1. If z ∈ C with |z| ≤ 1, then |ez − (1 + z)| ≤ |z|2.

Proof. By Taylor Expansion, f(z) = ez =
∞∑
n=0

∂n

∂zn
f(0) z

n

n!
= 1 + z + z2

2!
+ · · · . Then observe:

|ez − (1 + z)| =
∞∑
n=2

zn

n!
Taylor Expansion about 0 for ez

≤ |z|2
∞∑
n=2

1

n!
Since |z| < 1 by assumption, |z|2 > |z|n for n > 2

≤ |z|2
∞∑
n=2

1

2n−1
For n ≥ 1, n! ≥ 2n−1

= |z|2
∞∑
n=1

1

2n
= |z|2

Lemma 8.1.2. For all z, w ∈ C and n ∈ N, |zn − wn| ≤ n(max {|z|, |w|})n−1.

Proof. Without loss of generality, assume |w| ≤ |z|. Then:

zn − wn = (z − w)(zn−1 + wzn−2 + · · ·+ wn−2z + wn−1)

|zn − wn| ≤ |z − w|(|z|n−1 + |w||z|n−2 + · · ·+ |w|n−2|z|+ |w|n−1) Triangle Inequality

≤ |z − w|(|z|n−1 + |z||z|n−2 + · · ·+ |z|n−2|z|+ |z|n−1) Assumed |w| ≤ |z|
≤ |z − w| · n · |z|n−1

Lemma 8.1.3. If {cn} ∈ C is a sequence of numbers converging to c, then lim
n→∞

(1+ cn
n
)n = ec.

Proof. By the triangle inequality,
∣∣(1 + cn

n
)n − ec

∣∣ ≤ ∣∣(1 + cn
n
)n − ecn

∣∣ + |ecn − ec|. In the
limit, the second term in the sum vanishes and, after multiplying an exponent by one and
flipping the order of the difference, we have

∣∣(1 + cn
n
)n − ec

∣∣ ≤ ∣∣(e cn
n )n − (1 + cn

n
)n
∣∣. Notice

that |1 + cn
n
| ≤

∣∣e cn
n

∣∣ from the Taylor Expansion in (Lemma 4.1, Page 34). So identifying
cn
n

with w and e
|cn|
n with z in (Lemma 8.1.2, Page 70), we can further bound our expression

with
∣∣(e cn

n )n −
(
1 + cn

n

)n∣∣ ≤ n
∣∣e cn

n

∣∣n−1 |e cn
n − (1 + cn

n
)|. Since cn converges to c in the limit,

for all large n, | cn
n
| < 1. With this in mind we can apply (Lemma 8.1.1, Page 70) to improve

our bound to n
∣∣e cn

n

∣∣n−1 |e cn
n − (1 + cn

n
)| ≤ n

∣∣e cn
n

∣∣n−1 | cn
n
|2. Some final arithmetic gives us

n
∣∣e cn

n

∣∣n−1 | cn
n
|2 = n

∣∣e cn
n

∣∣n−1 |cn|
n2 ≤ e|cn|n−1

n |cn|
n

≤ e|cn||cn|
n

, which goes to zero as n goes to
infinity.
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Lemma 8.1.4. lim
T→∞

∫ T

0
sin(θt)

t
dt =


π
2
, θ > 0

0, θ = 0
−π
2
, θ < 0

Proof. If θ = 0, then the integrand is 0. So assume θ ̸= 0. Using the substitution u = θt
we have d

dt
u = θ and so du = θ dt. Then

∫ T

0
sin(θt)

t
dt =

∫ θt

0
sin([u])
[u
θ
]
[du
θ
] =

∫ θt

0
sin(u)

u
du since as

t varies from 0 to T , u = θt varies from 0 to θT . This is the sine integral, which evaluates

to sgn(θ) ·
∫ |θT |
0

sin(θt)
t

dt. Since we are interested in the limit of this quantity as T → ∞, it

suffices to show lim
T→∞

∫ T

0
sin(t)

t
dt = π

2
.

Our strategy is to write the integral as a double integral that will help us get a usable
limit. Since

∫∞
0

e−ty dy = 1
t
, t
∫∞
0

e−ty dy = 1 and so:

∫ T

0

sin(t)

t
dt =

∫ T

0

sin(t)

t
·
(
t

∫ ∞

0

e−ty dy

)
dt =

∫ T

0

(∫ ∞

0

sin(t)e−ty dy

)
dt (8.1)

See that the integrand is integrable:∫ T

0

(∫ ∞

0

∣∣sin(t)e−ty
∣∣ dy) dt

=

∫ π

0

(∫ ∞

0

sin(t)e−ty dy

)
dt+

∫ T

π

(∫ ∞

0

|sin(t)| e−ty dy

)
dt

≤
∫ π

0

(∫ ∞

0

sin(t)e−ty dy

)
dt+

∫ T

π

(∫ ∞

0

e−ty dy

)
dt

=

∫ π

0

sin(t)
1

t
dt+

∫ T

π

1

t
dt

≤
∫ π

0

1 dt+

∫ T

π

1 dt < ∞

So we can apply Fubini’s Theorem (Theorem ??, Page ??) to flip the integrals and write:∫ T

0

sin(t)

t
dt =

∫ ∞

0

(∫ T

0

sin(t)e−ty dt

)
dy (8.2)

We now try to evaluate the inner integral, call it I(t) =
∫ T

0
sin(t)e−ty dt, using integration

by parts. Choose u = e−ty and dv = sin(t) dy so that d
dt
u = −ye−ty and v = − cos(t). Then

we can write:

I(t) =
(
−e−ty cos(t)

)∣∣T
0
−
∫ T

0

y cos(t)e−ty dt (8.3)

We again apply integration by parts to the remaining integral. Choose u = ye−ty and
dv = cos(t) dt so that d

dt
u = −y2e−ty and v = sin(t). Then:
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∫ T

0

y cos(t)e−ty dy =
(
ye−ty sin(t)

)∣∣T
0
−
∫ T

0

−y2e−ty sin(t) dt =
(
ye−ty sin(t)

)∣∣T
0
+y2I(t) (8.4)

Equations 8.3 and 8.4 combine to say:

I(t) =
1

1 + y2

((
−e−ty cos(t)

)∣∣T
0
−
(
ye−ty sin(t)

)∣∣T
0

)
=

1

1 + y2
(
1− e−Ty cos(T )− ye−Ty sin(T )

)
When y > 0, the second factor is bounded and tends to 1 as T grows large. Thus there

exists a c such that 1
1+y2

(
1− e−Ty cos(T )− ye−Ty sin(T )

)
< c

1+y2
for all T, y > 0 and we can

use the Dominated Convergence Theorem (Theorem 5.8, Page 43) to say:

lim
T→∞

∫ T

0

sin(t)

t
dt = lim

T→∞

∫ ∞

0

(∫ T

0

sin(t)e−ty dt

)
dy Equation 8.2

=

∫ ∞

0

lim
T→∞

(∫ T

0

sin(t)e−ty dt

)
dy Dominated Convergence Theorem

=

∫ ∞

0

1

1 + y2
dy

= tan−1(y)
∣∣∞
0

=
π

2

Lemma 8.1.5. There is a c ∈ R so that |
∫ T

0
sin(θt)

t
dt| ≤ c for all θ ∈ R and for all T ≥ 0.

Proof. From Lemma 8.1.4, there exists a to such that for all T ≥ t0,
∣∣∣∫ T

0
sin(θt)

t
dt
∣∣∣ ≤ π (since

in the limit, the difference between
∣∣∣∫ T

0
sin(θt)

t
dt
∣∣∣ and π

2
becomes arbitrarily small).

For T < t0, notice that
∣∣∣∫ T

0
sin(θt)

t
dt
∣∣∣ ≤ |

∫ T

0

∣∣∣ sin(θt)t

∣∣∣ dt ≤
∫ T

0
1 dt = T . So a choice of

c = max {π, t0} yields our result.
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Theorem 8.2. Inversion Formula: The characteristic function uniquely determines the
law of a random variable. Specifically, for all continuity points a, b of FX , P(a < X < b) =

lim
T→∞

1
2π

∫ T

−T
e−ita−e−itb

it
φX(t) dt.

Proof. For notational ease, define I(t) =
∫ T

−T
e−ita−e−itb

it
φX(t) dt. By the Riemann-Stieltjes

(Definition 3.2, Page 21) view of expectation, this is I(t) =
∫ T

−T

(∫∞
−∞

e−ita−e−itb

it
eitxµX(dx)

)
dt.

We want to flip the integrals, so aim to apply Fubini’s Theorem (Theorem ??, Page ??).

To do so, we must show that the integrand is integrable. Since
∣∣eiθ∣∣ = 1 for all θ, observe:∣∣∣∣e−ita − e−itb

it
eitx
∣∣∣∣ = ∣∣∣∣e−ita − e−itb

it

∣∣∣∣ · ∣∣eitx∣∣ = ∣∣∣∣∫ b

a

e−ity dy

∣∣∣∣ · ∣∣eitx∣∣ ≤ ∫ b

a

∣∣e−ity
∣∣ dy = (b− a)

So
∫ T

−T

(∫∞
−∞

e−ita−e−itb

it
eitxµX(dx)

)
dt ≤

∫ T

−T

(∫∞
−∞(b− a)µX(dx)

)
dt = 2T (b − a) < ∞,

which proves we can apply Fubini. Thus I(T ) =
∫∞
−∞

(∫ T

−T
e−ita−e−itb

it
eitx dt

)
µX(dx). We now

closely examine the integrand.

Using Euler’s Formula, write the integrand in the form A+B:

e−ita − e−itb

it
eitx =

eit(x−a) − eit(x−b)

it

=
cos (t(x− a)) + i sin (t(x− a))

it
− cos (t(x− b)) + i sin (t(x− b))

it

=
cos (t(x− a))− cos (t(x− b))

it
+

sin (t(x− a))− sin (t(x− b))

t
= A+B

Using the linearity of the intergral,
∫ T

−T
(A+ B) dt =

∫ T

−T
Adt+

∫ T

−T
B dt. Since cosine is

an even function in t, the numerator in A is an even function. Since it is an odd function in
t, the denominator in A is an odd function. So A is an odd function being integrated over
a symmetric interval, and thus evaluates to zero. After abbreviating S(θ, T ) =

∫ T

0
sin(θt)

t
dt,

our integral becomes:

I(T ) =

∫ ∞

−∞

(∫ T

−T

sin (t(x− a))− sin (t(x− b))

t
dt

)
µX(dx)

= 2

∫ ∞

−∞

(∫ T

0

sin (t(x− a))− sin (t(x− b))

t
dt

)
µX(dx)

= 2

∫ ∞

−∞
[S(x− a, T )− S(x− b, T )] µX(dx)

Taking the limit and applying Lemma 8.1.5, we see:

lim
T→∞

I(T ) = 2

∫ ∞

−∞
lim
T→∞

[S(x− a, T )− S(x− b, T )] µX(dx)
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We can compute the inside limit directly from Lemma 8.1.4. Since a < b, we have:

lim
T→∞

[S(x− a, T )− S(x− b, T )]

= lim
T→∞

S(x− a, T )− lim
T→∞

S(x− b, T )

=


π
2
, (x− a) > 0

0, (x− a) = 0
−π
2
, (x− a) < 0

−


π
2
, (x− b) > 0

0, (x− b) = 0
−π
2
, (x− b) < 0

=


π, a < x < b
π
2
, a < (x = b) or (x = a) < b

0, x < a or x > b

Then breaking up the integral, we reach our desired conclusion:

lim
T→∞

I(T ) = 2

(∫
x∈(a,b)

π µX(dx) +

∫
x{a,b}

π

2
µX(dx) +

∫
x/∈[a,b]

0µX(dx)

)
= 2

(
πP(a < X < b) +

π

2
P(X ∈ {a, b})

)
= 2πP(a < X < b)
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Theorem 8.3. Continuity Theorem: Xn
d−→ X if and only if φXn(t) → φX(t) for all t ∈ R.

Proof. Assume Xn
d−→ X. By definition, Xn converges in distribution to X if for all bounded

and continuous f , lim
n→∞

E(f(Xn)) = E(f(X)). Since f(x) = eitx = cos(tx) + i sin(tx) is

bounded and continuous, we have lim
n→∞

E
(
eitXn

)
= lim

n→∞
φXn(t) = E

(
eitX

)
= φX(t).

Now assume φXn(t) → φX(t) for all t. We focus our efforts on proving that {Xn}∞n=1 is
tight, i.e. we want to show that there is a M > 0 so that P(|Xn| > M) is arbitrarily small
for any n.

We start with the definition. The random variable may or may not have a density function,
so to keep to the most general terms, let µXn denote the law of Xn. By the Riemann–Stieltjes
(Definition 3.2, Page 21) view of expectation, we have:

φXn(t) = E(eitXn) =

∫
R
eitxµXn(dx) (8.5)

Now by Lemma 8.0.1, φXn(0) = 1. If Xn is tightly concentrated around 0, then small
perturbations t about 0 should yield values of φXn(t) close to one. On the symmetric interval

(−δ, δ), the total deviation of φXn(t) from 1 is
∫ δ

−δ
(1−φXn(t)) dt, so the average deviation is

1
2δ

∫ δ

−δ
(1− φXn(t)) dt. Plugging Equation 8.5 into this, we see the average deviation is:

1

2δ

∫ δ

−δ

(
1−

(∫
R
eitxµXn(dx)

))
dt (8.6)

Since µXn is a probability mass, 1−
(∫

R e
itxµXn(dx)

)
=
∫
R µXn(dx)−

(∫
R e

itxµXn(dx)
)
=∫

R (1− eitx)µXn(dx) and we can write the average deviation as:

1

2δ

∫ δ

−δ

(∫
R

(
1− eitx

)
µXn(dx)

)
dt =

1

2δ

∫
R

(∫ δ

−δ

(
1− eitx

)
dt

)
µXn(dx) (8.7)

After applying Fubini’s Theorem (Theorem ??, Page ??) to exchange the order of the
integrals. Since d

dt
eitx = ixeitx, we can evaluate the inner integral in Equation 8.7 as:

1

2δ

∫
R

((
t− eitx

ix

)∣∣∣∣δ
−δ

)
µXn(dx) =

1

2δ

∫
R

(
2δ +

e−iδx − eiδx

ix

)
µXn(dx) (8.8)

By Euler’s formula, e−iδx − eiδx = (cos(−δx) + i sin(−δx))− (cos(δx) + i sin(δx)). Cosine
is an even function, and sine an odd function, so the numerator can be written in the form
(cos(δx)− i sin(δx))− (cos(δx) + i sin(δx)) = −2i sin(δx). So Equation 8.8 can be written:

1

2δ

∫
R

(
2δ +

−2i sin(δx)

ix

)
µXn(dx) =

1

2δ

∫
R

(
2δ − 2 sin(δx)

x

)
µXn(dx) (8.9)
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It is natural to factor out 2δ. So Equation 8.9 becomes:

1

2δ

∫
R
2δ

(
1− sin(δx)

δx

)
µXn(dx) =

∫
R

(
1− sin(δx)

δx

)
µXn(dx) (8.10)

Since sin(δx)
δx

≤ 1 (this follows since for f(y) = y − sin(y), d
dy
f(y) = 1 − cos(y) ≥ 0,

and f ′(0) = 0, so y − sin(y) ≥ 0), the integrand 1 − sin(δx)
δx

is always positive. And since∫
R

(
1− sin(δx)

δx

)
µXn(dx) =

∫
{|Xn|≥ 2

δ}
(
1− sin(δx)

δx

)
µXn(dx) +

∫
{|Xn|< 2

δ}
(
1− sin(δx)

δx

)
µXn(dx),

the average deviation is:

1

2δ

∫ δ

−δ

(1−φXn(t)) dt=

∫
R

(
1−sin(δx)

δx

)
µXn(dx) ≥

∫
{|Xn|≥ 2

δ}

(
1−sin(δx)

δx

)
µXn(dx) (8.11)

When |Xn| ≥ 2
δ
, |δx| ≥ 2 and so | sin(δx)

δx
| ≤ 1

2
and 1− sin(δx)

δx
≥ 1

2
. Then we can write:

1

2δ

∫ δ

−δ

(1−φXn(t)) dt ≥
∫
{|Xn|≥ 2

δ}

(
1−sin(δx)

δx

)
µXn(dx) =

∫
{|Xn|≥ 2

δ}
1

2
µXn(dx) (8.12)

Integrating Equation 8.12, we have:

1

2δ

∫ δ

−δ

(1−φXn(t)) dt ≥
∫
{|Xn|≥ 2

δ}
1

2
µXn(dx) =

1

2
P

(
|Xn| ≥

2

δ

)
(8.13)

Now let ε > 0 be given. Since lim
t→0

φX(t) = φX(0) = 1, the definition of limit guarantees

the existence of a δ1 such that whenever |t − 0| = |t| < δ1, |φX(t) − 1| < ε. Further, since
φX(t) < 1, 1− φX(t) ≤ |φX(t)− 1| < ε. So choosing δ < δ1, we see:

1

2δ

∫ δ

−δ

(1−φX(t)) dt ≤
1

2δ

∫ δ

−δ

ε dt =
1

2δ
(δε+ δε) = ε (8.14)

Since lim
n→∞

(1− φXn(t)) = (1− φX(t)) and since (1− φXn(t)) ≤ 2, we can apply the Dom-

inated Convergence Theorem (Theorem 5.8, Page 43) to say that lim
n→∞

1
2δ

∫ δ

−δ
(1−φXn(t)) dt =

1
2δ

∫ δ

−δ
lim
n→∞

(1−φXn(t)) dt =
1
2δ

∫ δ

−δ
(1−φX(t)) dt. So Equation 8.13 and Equation 8.14 become:

1

2
P

(
|Xn| ≥

2

δ

)
≤ lim

n→∞

1

2δ

∫ δ

−δ

(1−φXn(t)) dt =
1

2δ

∫ δ

−δ

(1− φX(t)) dt ≤ ε (8.15)
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Since ε > 0 was arbitrary, this proves that {Xn}∞n=1 is tight. Then by Helly’s Selection
Criteria (Theorem 5.12, Page 46), every subsequence of {Xn}∞n=1 admits a further subsequence
that convergences weakly. Since φXn(t) → φX(t), and since characteristic functions uniquely
determine the law (Theorem 8.2, Page 73), that weak limit must be X. Since this limit holds

for every subsequence, we must have Xn
d−→ X as desired.

Theorem 8.4. Central Limit Theorem: Let {Xn}∞n=1 be an iid sequence of random

variables. If V(Xi) = σ2 < ∞, E(Xi) = µ, and Sn =
n∑

i=1

Xi, then
Sn−nµ√

nσ2

d−→ N(0, 1).

Proof. By the Continuity Theorem (Theorem 8.3, Page 75), it suffices to show the char-
acteristic functions converge in distribution. In Problem 4.2 Page 37, we derived the mo-

ment generating function of a standard normal random variable Y as MY (t) = e
t2

2 . Since
MY (t) = E(etY ) and since φY (t) = E(eitY ), substituting t for it in the computation in Prob-

lem 4.2 yields φY (t) = e
−t2

2 . So, we aim to show the characteristic functions on the left side
converge to this value.

Assume E(X) = µ = 0 (if not, just replace each Xi with Xi − µ). With this assumption,
V(X) = E(X2) = σ2 and so for a single random variable X, we have:

φX(t) = φX(0) + φ′
X(0) + φ′′

X(0)
t2

2
+ o(t2) Taylor Expansion about c = 0

= 1 + σ2 t
2

2
+ o(t2) Part 5 of Lemma 8.0.1

Since each Xi is independent, by part 1 of Lemma 8.0.1:

φSn(t) =

(
1 + σ2 t

2

2
+ o(t2)

)n

For any fixed n, 1√
nσ2

is a constant, so by part 3 of Lemma 8.0.1:

φ Sn√
nσ2

(t)=Sn

(
t√
nσ2

)
=

1+σ2

[
t√
nσ2

]2
2

+o

([
t√
nσ2

]2)
n

=

(
1 +

t2

2n
+ o

(
t2

nσ2

))n

Then call cn = −t2

2
+ n · o

(
t2

nσ2

)
. See that lim

n→∞
cn = − t2

2
since, by the definition of

o
(

t2

nσ2

)
, there exists a sequence an

n→∞−−−→ 0 such that o
(

t2

nσ2

)
= t2

nσ2an and then n ·o
(

t2

nσ2

)
=

t2

σ2an
n→∞−−−→ 0. So by Lemma 8.1.3:

lim
n→∞

φ Sn√
nσ2

(t) = lim
n→∞

(
1 +

t2

2n
+ o

(
t2

nσ2

))n

= lim
n→∞

(
1 +

cn
n

)n
= e

−t2

2
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8.3 Problems

Problem 8.1) Roll 166 six-sided dice and add the outcomes. Using the Central
Limit Theorem, estimate the probability that the total is at least 537.

The mean of one roll is µ =
6∑

n=1

n
6
= 7

2
.

The variance of one roll is E(X2)− E(X)2 =

(
6∑

n=1

n2

6

)
−
(

7
2

)2

=
6(6+1)(2·6+1)

6

6
− 49

4
= 35

12

Then using the central limit theorem, we get an approximation of P

(
Z ≥ 537− 166·7

2√
166· 35

12

)
, or

about P(Z ≥ −2) ≈ 0.975.

Problem 8.2) The Mega Millions lottery is played as follows. You pick five distinct
integers between 1 and 70 (order doesn’t matter), as well as one integer between
1 and 25 (which could be a repeat of one of the five other numbers). The lottery
does the same, uniformly at random from all possible choices. If all six numbers
match, you win (a share of) the jackpot.

a. Compute the probability of winning the jackpot.

There are
(
70
5

)
ways to pick the five numbers without replacement or regard to order. So

the probability of matching all five is 1

(705 )
. We consider the sixth selection independent of

the first five picks, so the total probability of winning the jackpot is 1

25·(705 )
= 1

302,575,350
.

b. Now suppose 1 million people play (where each person selects their six num-
bers independently at random, uniformly from all possible choices.) Estimate
the probability that no one wins the jackpot.

We have n = 1, 000, 000 and p = 1
302,575,350

, so parameter λ = n
p
≈ 1

300
. Then using the

random variable X ∼ Poi
(

1
300

)
, we see P(X = 0) = λ[0]e−

1
300

[0]!
= e−

1
300 ≈ 0.9967.
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Problem 8.3) Suppose φX : R → C is a characteristic function. That is, there is
a random variable X such that φX(t) = E(eitX) for all t ∈ R.

a. Show that φX(−t) is the complex conjugate of φX(t).

Observe φX(−t) = E(e−itX) = E
(
cos(−tX)+ i sin(−tX)

)
= E

(
cos(tX)− i sin(tX)

)
since

cosine is an even function and sine an odd function. This is exactly the complex conjugate
of φX(t) = E

(
eitX

)
= E

(
cos(tX) + i sin(tX)

)
.

b. Show that |φX(t)|2 is also a characteristic function.

First note that for any complex number z, say z = a + bi, |z|2 =
(√

a2 + b2
)2

= a2 + b2.
This is precisely z · z̄ = (a+ bi)(a− bi) = a2 − b2i2 = a2 + b2.

So from part a, |φX(t)|2 = φX(t) · φX(−t) = E(eitX)E(e−itX). We want to show this
is a characteristic function for some random variable Z. Consider Z = X − Y where Y is
an independent copy of X. The characteristic function of Z is then φX(t) = E(eit(X−Y )) =
E(eitXe−itY ) = E(eitX)E(e−itY ) where the last equality follows from the independence of X
and Y (Lemma 8.0.1, Page 69). Since characteristic functions uniquely characterize distri-
butions (Theorem 8.2, Page 73), and since Y was chosen to have the same distribution as X,
we can write the final equality as E(eitX)E(e−itX) as desired.

c. Show that Re
(
φX(t)

)
, the real part of φX(t), is also a characteristic function.

For any z = a+ bi ∈ C, Re(z) = z+z̄
2

since (a+bi)+(a−bi)
2

= 2a
2
= a.

From part a, see:

Re [φX(t)] =
1

2
φ(t) +

1

2
φ(−t) =

1

2

(
E
(
cos(tX) + i sin(tX)

)
+ E

(
cos(−tX) + i sin(−tX)

))
Using linearity of expectations, we have:

Re [φX(t)] =
1

2

(
E
(
cos(tX) + cos(−tX)

)
+ iE

(
sin(tX) + sin(−tX)

))
Using the parity of sine and cosine, we further have:

Re [φX(t)] =
1

2

(
E
(
2 cos(tX)

)
+ iE

(
0
))

=
1

2

(
2E(cos(tX))

)
= E

(
cos(tX)

)
We want to show this is a characteristic function for some random variable Z, and our

steps have already revealed the solution. Consider Y independent of X with P(Y = 1) =
P(Y = −1) = 1

2
, and the random variable Z = XY . Then we have:

φZ(t) = E(eitZ) =
1

2
E
(
eitX

)
+

1

2
E
(
e−itX

)
= E(cos(tX))
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Problem 8.4) Show that if X and Y are independent and X + Y
d
= X, then

Y = 0 almost surely.

Since characteristic functions uniquely determine distributions of random variables (Theo-
rem 8.2, Page 73), and X +Y is equal in distribution to X by assumption, φX(t) = φX+Y (t)
for all t ∈ R. Since X and Y are independent, by properties of characteristic functions
(Lemma 8.0.1, Page 69), φX+Y (t) = φX(t)φY (t). Then as φX(t) = φX(t)φY (t) for all t, we
must have φY (t) = 1 whenever φX(t) ̸= 0.

Further, since φX(0) = 1 and since characteristic functions are continuous, there exists a
δ > 0 such that whenever t ∈ [−δ, δ], φX(t) ̸= 0 (and consequently φY (t) = 1). In Equation
8.11 from the proof of the Continuity Theorem (Theorem 8.3, Page 75), we showed that:

1

2δ

∫ δ

−δ

(1− φY (t)) dt = E
(
1− sin(δY )

δY

)
Since φY (t) = 1 for every t in (−δ, δ), the integrand becomes a constant 0. Since sine is

an odd function, sin(δY )
δY

=
∣∣∣ sin(δY )

δY

∣∣∣ ≤ 1 and thus 1− sin(δY )
δY

≥ 0.

A non-negative random variable whose expectation is 0 is almost surely 0. So sin(δY )
δY

a.s.
= 1,

which implies Y
a.s.
= 0 from the result lim

x→0

sin(x)
x

= 1.
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9 Glossary

Algebra: A collection of sets A from a non-empty set Ω is an algebra provided A is closed
under finite unions and complements. That is, A is an algebra if whenever A1, A2, . . . , An ∈ A
we have

n⋃
i=1

Ai ∈ A and AC
1 ∈ A. (Definition 1.9, Page 5).

Characteristic Function: The characteristic function of a random variable X is given by
φX(t) = E(eitX). (Definition 8.1, Page 68).

Coefficient Of Determination: Where ρ(X, Y ) is the correlation between random vari-
ables X and Y , the coefficient of determination is simply it’s square; r2 = ρ(X, Y )2. Note
r2 ∈ [0, 1]. (Definition 3.10, Page 22).

Convergence (Almost Surely): A sequence of random variables Xn converges almost
surely to a random variable X, denoted Xn

a.s.−−→ X, if P( lim
n→∞

Xn = X) = 1. To be precise,

this is saying Xn
a.s.−−→ X if P

({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1.

(Definition 5.2, Page 38).

Convergence (in Distribution; Weak Convergence): A sequence of random variables

Xn converges in distribution to a random variable X, denoted Xn
d−→ X, if lim

n→∞
FXn(x) =

FX(x) for all points x where the CDF (Theorem 1.3, Page 7) FX is continuous. An equivalent

definition is thatXn
d−→ X provided lim

n→∞
E(f(Xn)) = E(f(X)) for all bounded and continuous

f : R → R. (Definition 5.4, Page 39).

Convergence (in Lp): A sequence of random variables Xn converges in Lp to X, denoted

Xn
Lp

−→ X, if X ∈ Lp(P) and lim
n→∞

∥Xn −X∥p = 0 (Definition 4.6, Page 32). When dealing

with p = 1, we may say “Xn converges in mean to X”. When dealing with p = 2, we may
say “Xn converges in mean-square to X”. (Definition 5.3, Page 38).

Convergence (In Probability): A sequence of random variables Xn converges in proba-
bility to a random variable X, if for any ε > 0, lim

n→∞
P(|Xn −X| < ε) = 1. We denote this

Xn
P−→ X. To be precise, Xn

P−→ X if lim
n→∞

P ({ω ∈ Ω : |Xn(ω)−X(ω)| < ε}) = 1.

(Definition 5.1, Page 38).

Convergence (Vaguely): A sequence of random variables converges vaguely if their distri-
bution functions Fn converges to a monotone, right-continuous function F : R → [0, 1], at all
continuity points t of F . Note that F need not be a valid Cumulative Distribution Function
(it’s missing the condition that lim

n→∞
F (xn) = 1, for example). (Definition 5.5, Page 39).

Convex: A function whose second derivative is everywhere positive. Equivalently, a function
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f : R → R such that for all t ∈ [0, 1] and for all x, y ∈ R, we have f
(
tx + (1 − t)y

)
≤

tf(x) + (1− t)f(y).(Definition 4.1, Page 32).

Covariance: The covariance of random variables X and Y is Cov(X, Y ) = E(XY ) −
E(X)E(Y ) = E

[(
X − E(X)

)(
Y − E(Y )

)]
. This is a generalization of variance, since V(X) =

Cov(X,X). When the covariance is zero, we say the random variables are uncorrelated.
(Definition 3.8, Page 21).

Correlation: The correlation coefficient between random variables X and Y is ρ(X, Y ) =
Cov(X,Y )√
V(X)V(Y )

. Note ρ ∈ [−1, 1]. (Definition 3.9, Page 21).

Cumulative Density Function (CDF) Of A Random Variable: Where µX is the law
(Definition 2.5, Page 13) of a random variableX, the CDF ofX is the function FX : R → [0, 1]
given by:

FX(x) = µX

(
(−∞, x]

)
= P(X−1 (−∞, x]) = P({ω ∈ Ω : X(ω) ≤ x}) = P(X ≤ x)

Here x (lowercase) denotes a generic element of the domain R, and X (uppercase) denotes
the random variable. So, we might have, e.g. X(ω) = x. Compare this definition to Theorem
1.3, which doesn’t require a random variable. This is really the exact same idea, it just maps
the image of the random variable back to the sample space. (Definition 2.6, Page 15).

Distribution (Push-forward, Law) Of A Random Variable, µX: Let (Ω,F ,P) be
a probability space and X : (Ω,F) → (R,B(R)) be a random variable. Then the law
of X (distributional measure, push-forward) is the function µX : B(R) → [0, 1] given by
µX(B) = P(X−1(B)) = P ({ω ∈ Ω : X(ω) ∈ B}). (Definition 2.5, Page 13).

Event Space F : a σ-algebra consisting of unions, intersections, and complements from
elements in the sample space. (Definition 1.3, Page 4).

Eventually Always: If (Ω,F ,P) is a probability space and if {Ai}∞i=1 is a sequence of

events in F , then eventually, Ai will always occur if P

(
∞⋃
n=1

⋂
i≥n

Ai

)
= 1. Identifying union

with “there exists” and intersection with “for all”, this is saying “there exists an n ∈ N
such that for all i ≥ n, Ai occurs with probability 1”, which is the definition of lim inf;

P

(
∞⋃
n=1

⋂
i≥n

Ai

)
= 1 ⇐⇒ P

(
lim inf
i→∞

)
= P ({ω ∈ Ω : ω ∈ Ai for all large enough i}) = 1.

While not universal notation, we may abbreviate this to P (Ai e.a.) = 1.
(Definition 7.3, Page 59)

Expectation: The expectation of a random variable X, denoted E(X), obeys

1. Linearity: for all random variables X, Y and constants c, E(cX + Y ) = cE(X) +E(Y ).

2. Non-negativity: if P(X > 0) = 1 then E(X) ≥ 0.
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We define the calculation for E in four stages in the theorem section below: first for sim-
ple random variables, then for bounded random variables, then for non-negative random
variables, then for general random variables. At each stage, we calculate the expectation
differently, and check that it agrees with previous calculations and meet the criteria for
expectations above. While this is a useful exercise, actually computing expectations is usu-
ally easier done with the previous two pieces of machinery (Lebesgue and Riemann-Stieljes
Integration). (Definition 3.6, Page 21).

Filtration: Where Ω is a sample space, where T is some fixed positive number, and where
Ft is a sigma-algebra for all t ∈ [0, T ], then if Fs ⊆ Ft whenever s ≤ t, we say the collection
Ft for t ∈ [0, T ] is a filtration. (Definition 1.12, Page 6).

Identically Distributed: Two random variables X and Y are identically distributed if
P(X ∈ B) = P(Y ∈ B) for all B ∈ B(R). Equivalently, we can check if P(Xi ≤ t) =
P(X1 ≤ t) for all t ∈ R (equivalent by taking B = (−∞, t]). Another equivalence is
E
(
f(Xi)

)
= E

(
f(X1)

)
for all measurable f and all i ≥ 1 provided the expectations exist

(equivalent by using the push-forward formula in the above). (Definition 7.1, Page 59)

Independence (Of Events): A finite set of events A1, A2, . . . , An is mutually indepen-
dent if for all I ⊆ {1, . . . , n} we have P

(⋂
i∈I Ai

)
=
∏
i∈I
P(Ai). We say A1, A2, . . . , An are

pairwise independent if for all i ̸= j, P(Ai ∩ Aj) = P(Ai)P(Aj). Note that mutual inde-
pendence implies pairwise independence, but not vise-versa. Infinite collection of events are
independent when any finite subset of the events are independent. (Definition 6.3, Page 52).

Independence (Of Random Variables): A finite collection of random variables {Xi}i∈I is
independent if {σ(Xi)}i∈I (Definition 2.4, Page 13) is independent. For two random variables,
this is equivalent to checking that P(X ≤ t1, Y ≤ t2) = FX(t1)FY (t2).
(Definition 6.5, Page 52).

Independence (Of Sigma Algebras): A finite collection of sigma-algebras {Fi}i∈I is
independent if for every Ai ∈ Fi, {Ai}i∈I is independent. Note that this specifically is not
saying anything about events within any one sigma-algebra (i.e the events within a sigma-
algebra may not be independent, see example), but rather is saying that selecting one event
from each sigma-algebra results in independence. (Definition 6.4, Page 52).

Infinitely Often: If (Ω,F ,P) is a probability space and if {Ai}∞i=1 is a sequence of events

in F , then Ai occurs infinitely often if P

(
∞⋂
n=1

⋃
i≥n

Ai

)
= 1. Identifying intersection with “for

all” and union with “there exists”, this is saying “for all n ∈ N, there exists an i ≥ n such that

Ai occurs with probability 1”, which is precisely the definition of lim sup; P

(
∞⋂
n=1

⋃
i≥n

Ai

)
=

1 ⇐⇒ P

(
lim sup

i→∞
Ai

)
= P ({ω ∈ Ω : ω ∈ Ai for infinitely many i}) = 1. We will often

abbreviate this to P (Ai i.o.) = 1.(Definition 7.2, Page 59)
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λ-system: A collection of sets L from a non-empty set Ω is a lambda-system provided L
is closed under compliment and countable disjoint union. That is, L is a lambda-system if

whenever A1, A2, · · · ∈ L are disjoint, we have
n⊎

i=1

Ai ∈ L and Ac
1 ∈ L.

(Definition 3.12, Page 22).

Lebesgue Integral: Recall the definition of the Riemann Integral for a differentiable func-
tion f . Partition the domain a = x0 < x1 < · · · < xn−1 < xn = b, let Mk = max

xk−1≤x≤xk

f(x),

mk = min
xk−1≤x≤xk

f(x), Π = {x0, . . . , xn}, and ∥Π∥ = max
1≤k≤n

(xk − xk−1), then see the Up-

per Riemann Sum (RSΠ+(f) =
n∑

k=1

Mk · (xk − xk−1) and Lower Riemann Sum (RSΠ−(f) =

n∑
k=1

mk · (xk − xk−1) converge to the same value as ∥Π∥ goes to zero, namely
∫ b

a
f(x) dx. In-

tegrating in this way necessitates a natural ordering of the domain, which is a property that
Ω, unlike R, may not have. For that reason, instead of partitioning the domain, we partition
the range in the Lebesgue Integral.

So assume for now that 0 ≤ X(ω) < ∞. Partition the range of the random variable X
as 0 = y0 < y1 < . . . and as before denote Π = {y0, . . . , yn} and ∥Π∥ = max

1≤k≤n
(yk − yk−1).

Consider the event Ak = {ω ∈ Ω : yk ≤ X(ω) ≤ yk+1}. Then the Lebesgue Integral is the

limit of the Lower Lebesgue Sum as ∥Π∥ goes to zero; lim
∥Π∥→0

∞∑
k=1

ykP(Ak) =
∫
Ω
X(ω) dP(ω).

Define X+(ω) = max {X(ω), 0} and X−(ω) = max {−X(ω), 0} (in the future we may ab-
breviate maximum as X∨0). If P({ω ∈ Ω : X+(ω) = ∞}) = P({ω ∈ Ω : X−(ω) = ∞}) = 0,
then we say X is integrable and have

∫
Ω
X(ω) dP(ω) =

∫
Ω
X+(ω) dP(ω)−

∫
Ω
X−(ω) dP(ω).

If both P({ω ∈ Ω : X+(ω) = ∞}) > 0 and P({ω ∈ Ω : X−(ω) = ∞}) > 0, then the Lebesgue
Integral is undefined. If only one of the positive or negative parts of X takes values of in-
finity with non-zero probability, then the Lebesgue Integral is either ∞ (in the case where
0 = P({ω ∈ Ω : X−(ω) = ∞}) < P({ω ∈ Ω : X+(ω) = ∞}) or −∞ (in the other case).

We may be interested in integrating our random variable over a subset A of Ω. In such
cases, we write

∫
A
X(ω) dP(ω) =

∫
Ω
1A(ω)X(ω) dP(ω) where 1A(ω) is the indicator function

previously defined. Note that in all cases, we are integrating with respect to the probability
measure in question, since the same event may have different probabilities under different
measures. We define the expectation of X as it’s Lebesgue Integral, and write E(X) =∫
Ω
X(ω) dP(ω). As we’ll see below, this is just one of many ways to define expectation.

(Definition 3.1, Page 20).

Lp Space: Fix a probability triple (Ω,F ,P). The space of random variables with finite p-
norm is denoted Lp(P) = {X : Ω → R : ∥X∥p < ∞}. Since p ≤ q =⇒ ∥X∥p ≤ ∥X∥q,
Lp(P) ⊇ Lq(P) (the spaces get more exclusive as p grows). In that sense, the most
exclusive space is L∞. In the conditions for which X belong in L∞, define ∥X∥∞ =
inf {L ≥ 0 : P(|X| ≤ L) = 1}. (Definition 4.7, Page 32).
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Measurable Function: A function X : Ω → S between measure spaces (Ω,F) and (S,S)
is measurable if whenever B ∈ S, X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F (the inverse image
of every measurable set is measurable). To emphasize that dependency on the respective
sigma-algebras and to be precise, we might say “X is (F ,S) measurable” (or just “X is
F -measurable” when S is understood) and write X : (Ω,F) → (S,S).
(Definition 2.1, Page 12).

Measurable Space (X,Σ): A set X (for example a sample space) along with a sigma-
algebra Σ on the set. mydefdef.measurespace.

Measure µ: In the context of a measure space (X,Σ), a measure µ : Σ → R is a function
from the sigma-algebra to the real line such that µ(∅) = 0 and µ is countably additive, i.e.

for all disjoint A1, A2, · · · ∈ Σ, µ

(
∞⊎
i=1

Ai

)
=

∞∑
i=1

µ(Ai) ≥ 0. (Definition 1.5, Page 4)

Measure Space (X,Σ, µ): A measurable space along with a measure acting on the space.
(Definition 1.6, Page 4).

(Central) Moment: The nth central moment of X is the value E [(X − E(X))n].
(Definition 4.3, Page 32).

(Raw) Moment: The nth raw moment of a random variable X is the value E(Xn).
(Definition 4.2, Page 32).

(Standard) Moment: The nth central moment of a random variable X is the value

E
[(

X−E(X)
σ

)n]
(where σ =

√
V(X), the standard deviation). (Definition 4.4, Page 32).

Moment Generating Function: The moment generating function (MGF) for a random
variable X is MX(t) = E(etX). The name of the function comes from the fact that the nth

derivative of the MGF with respect to t, evaluated at 0, is the nth raw moment.
(Definition 4.5, Page 32).

π-system: A collection of sets P from a non-empty set Ω is a pi-system provided P is closed
under finite intersection. That is, P is a pi-system if whenever A1, A2, . . . An ∈ P we have
n⋂

i=1

Ai ∈ P . (Definition 3.11, Page 22).

P-norm: The p norm of a random variable X is ∥X∥p = E
(
|X|p

)1/p
. By Jensen’s Inequality

(Theorem 4.3, Page 33), if p ≤ q, then ∥X∥p ≤ ∥X∥q. (Definition 4.6, Page 32).

Probability Measure P: A probability measure P : F → [0, 1] is a function on a sigma-
algebra F of the sample space Ω such that P(Ω) = 1 and P is countably additive, i.e. for

disjoint Ai’s, P

(
∞⊎
i=1

Ai

)
=

∞∑
i=1

P(Ai). This is a specific case of a general measure. Note that
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P(∅) = 0 as a consequence of the other two conditions. (Definition 1.7, Page 4).

Probability Space (Ω,F ,P): A triple consisting of a sample space Ω, an event space F ,
and a probability measure P acting on the measurable space (Ω,F).
(Definition 1.8, Page 5).

Quantile Function: Where FX is a valid CDF for a random variable X, the quantile
function for FX is the function F−1

X : [0, 1] → R given by F−1
X (u) = inf {t ∈ R : FX(t) ≥ u}.

We capture the intuition behind the quantile function at the cost of precision (since FX may
not have an inverse) when we use the notation F−1

X . (Definition 2.7, Page 15).

Random Variable: A measurable function X : Ω → R between measure spaces (Ω,F) and
(R,B(R)) (it is just a specific case of a measurable function where the codomain is fixed).
Note that the “randomness” from a random variable comes from the random experiment of
choosing the ω ∈ Ω. Note further that to emphasize the fact that a random variable is a
function, we may often write X(ω) (though X may be used for brevity).
(Definition 2.2, Page 12).

Random Variable (Bounded): A random variable X is bounded whenever there exists a
c ∈ R such that for all ω ∈ Ω, P(|X(ω)| < c) = 1. (Definition 3.4, Page 21).

Random Variable (Non-negative): A random variable X is non-negative if for all ω ∈ Ω,
P(X(ω) ≥ 0) = 1. (Definition 3.5, Page 21).

Random Variable (Simple): A random variable X is simple whenever there are only
finitely many values that X can take, that is, if there exists x1, x2, . . . , xn ∈ R such that for
all ω ∈ Ω, P(X(ω) ∈ {x1, x2, . . . , xn}) = 1. (Definition 3.3, Page 21).

Random Vector: A measurable function (X1, X2, . . . , Xn) : (Ω
n,Fn) → (Rn,B(Rn)). This

is essentially just n random variables placed next to each other. (Definition 2.3, Page 13).

Resolved Sets: Suppose we are given a measure space (Ω,F) and an outcome ω ∈ ω. The
sets in the event space F which are resolved by some level of information are those sets
A ∈ F that either definitely contain or definitely don’t contain ω. For this reason, it may be
helpful to informally think of sigma-algebras as “information”. (Definition 1.11, Page 6).

Riemann-Stieljes Integral: While the Lebesgue Integral allows for maximum generality
(for the purposes of these notes), to actually compute expectations, it often suffices to use
the integrals more familiar to us. The expectation of a function g of any random variable X
with cumulative distribution function FX is calculated as E

(
g(X)

)
=
∫∞
−∞ g(x) dFX(x). By

definition, FX(x) =
∫ x

−∞ fX(t) dt where fX is the density function of X. By the fundamental

theorem of calculus, this means dFX(x) = fX(x) dx. In particular, E(g(X)) =
∫∞
−∞ g(x) ·

fX(x) dx. (Definition 3.2, Page 21).
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Sample Space Ω: any set containing outcomes (e.g. heads/tails, 1:6, etc.).
(Definition 1.1, Page 4).

Semi-Algebra: A collection of sets S from a non-empty set Ω is a semi-algebra provided S
is closed under intersection and each compliment is some finite disjoint union from S (even
if the compliment is not in S). That is, S is a semi-algebra if whenever A1, A2, . . . , An ∈ S,
we have Ai

⋂
Aj ∈ S and Ac

j =
n⊎

i=1

Ai.(Definition 3.13, Page 22).

σ-Algebra: A collection of sets F from a non-empty set Ω is a sigma-algebra provided F
is closed under countable union and complements. That is, F is a sigma-algebra if whenever

A1, A2, · · · ∈ F we have
∞⋃
i=1

Ai ∈ A and AC
1 ∈ F . (Definition 1.2, Page 4).

σ-Algebra (Generated By An Event A, σ(A)): It is trivial to see that the intersection
of sigma algebras is itself a sigma-algebra. So we can define σ(A) to be the intersection of all
sigma-algebras containing A (in this sense, it is the smallest such set). Constructively, this
means we start with the sets in A, and allow for countably many unions, intersections, and
complements until we run out of ability to add more. (Definition 1.10, Page 5)

σ-algebra (Generated By A Random Variable X, σ(X)): Where X is a random
variable, the sigma-algebra generated by X is σ(X) = {X−1(B) : B ∈ B(R)}. Unwinding
the definition, this is {{ω ∈ Ω : X(ω) ∈ B} ∈ F : B ∈ B(R)}. Informally, it is the minimally
small sigma algebra that completely captures the information revealed by the values of the
random variable. (Definition 2.4, Page 13).

Sigma-Algebra (Generated By Random Variables): The sigma-algebra generated by
a sequence of random variables {Xi}i∈I is the smallest sigma-algebra containing σ(Xi) for all
i; σ({Xi}i∈I) = σ

( ⋃
i∈I

σ(Xi)
)
. Here, σ(X) = {{ω ∈ Ω : X(ω) ∈ B} : B ∈ B(R)}.

(Definition 6.1, Page 51).

Tail σ-Algebra: Where {Xi}i∈I is a sequence of random variables, the tail sigma algebra

is denoted T =
∞⋂
n=1

σ(Xn+1, Xn+2, . . . ). The idea is that the Tail σ-algebra is the collection

of events whose occurrence is unaffected when finitely many of the random variables are
changed. (Definition 6.2, Page 51).

Tightness: A sequence of random variables {Xn}n∈N are tight if for all ε > 0, there exists
a, b ∈ R such that P(Xn ∈ [a, b]) ≥ 1 − ε. Equivalently, the sequence is tight if there exists
a, b ∈ R such that FXn(a) ≤ ε and FXn(b) ≥ 1− ε. (Definition 5.6, Page 40).

Variance: The variance of a random variableX, denoted V(X), is the value E [(X − E(X))2] =

E(X2) −
(
E(X)

)2
. The square root of the variance is called the standard deviation;√

V(X) = σ. (Definition 3.7, Page 21).
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