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Abstract

Despite mathematicians best efforts, a proof for Riemann’s famous
1859 hypothesis has proved elusive for over a century and a half. John
Derbyshire published his Prime Obsession [1] as a way to demystify
the basics of Riemann’s conjecture so that amateurs and enthusiasts
can begin to grasp the work that has been undertaken to solve this
fascinating problem. The basic statement of the problem is as follows:
all non-trivial zeros of the zeta function have real part one-half. The
Zeta Function is denoted ζ(s) and has complex arguments s mapping

to
∑
n

1

  ns
.
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1 Properties of Complex Numbers

1.1 Complex Plane and Function Maps

We call z ∈ C a complex number if it can be written in the form z = a+bi
where a and b are real numbers and i2 = −1. The real part of z, denoted
Re(z), is entirely determined by a while the imaginary part of z, denoted
Im(z), is entirely determined by b. To plot z on the complex plane, we let
Re(z) run horizontally and Im(z) run vertically with i as the unit scaling
factor.

It then necessitates four dimensions to visualize a function f : C →
C; two for the argument plane and two for the value plane. This type of
depiction is unnatural. For example, in four dimensional space, two flat
planes can intersect at just a single point (just like two non-parallel lines need
not intersect in three-space, unimaginable in two-space). Rigorous definitions
of space and dimension are provided in previous papers dealing with linear
algebra [2] [3].

Instead, we elect to show separate argument and value planes. To do
this, we will mark where interesting values (namely zero’s or axis points of
a function) are mapped to (in the case of the value plane), or where these
interesting values come from (in the case of the argument plane).

For example, in Figure 1.1 the green lines represent points that are
mapped to either the real or complex axis and red dots represent the zero’s
of the Zeta Function. Notice that all the zero’s of the function seem to be
either even negative real numbers (which are called trivial zeros) or else have
real part 1

2
(the non-trivial zeros). The Riemann Hypothesis is that every

non-trivial zero lies on this ”critical line”.
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Figure 1.1: Argument Plane of the Zeta Function [5]

Meanwhile in Figure 1.2, we can see where these points on the critical
line are mapped to.

Figure 1.2: Value Plane of the Zeta Function [6]
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1.2 Arithmetic and Geometry of Complex Numbers

Definition 1.1. The magnitude of a complex number z = a + bi, denoted
|z|, is the Euclidean Distance from z to the origin of the complex plane. It
is calculated as |z| =

√
a2 + b2 .

Definition 1.2. The argument of a complex number z = a + bi, denoted
Arg(z) with −π < Arg(z) ≤ π , is the angle (in radians) a point z on the
complex plane forms with the real line.

Since the ”opposite” (to use common trigonometry terms) is determined
by b and the ”adjacent” is a, Arg(z) can be calculated as Arg(z) = tan−1

(
b
a

)
.

Together with the magnitude, the argument is essentially the polar coordi-
nates of the Cartesian Point (a, b).

Definition 1.3. The complex conjugate of a complex number z = a + bi,
denoted z̄, is its reflection across the real axis: z̄ = a− bi.

The arithmetic of complex numbers is largely as expected. Let z = a+ bi
and y = c + di. Then we see the following: z + y = (a + c) + (b + d)i,
z − y = (a− c) + (b− d)i, and zy = (ac− bd) + (bc+ ad)i.

To divide, one must first convert the dividend to a real number using

the complex conjugate:
z

y
=
zȳ

yȳ
=

(ac+ bd) + (bc− ad)i

c2 + d2
=

(
ac+ bd

c2 + d2

)
+(

bc− ad
c2 + d2

)
i.
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2 Prime Number Theorem

Let π(n) denote the number of prime numbers up to the natural number
n. It is not too difficult a task to write a functional script for the first billion
or so numbers in the domain. In multiples of 10, one can see the values of
the prime counting function below.

Figure 2.1: A Crude R Script For The Prime Counting Function

An alternative is to use an online source like dcode[4]. To better grasp
the distribution, see what happens when we increase the magnitude of the
argument and then adjust its scale.
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Figure 2.2: Prime Counting Function At Multiples of 1000

This resembles a logarithmic function– as the inputs increase multiplica-
tively, the outputs increase additively. It is natural to map loge n along with
the prior observations, which is done in Table 1.1 below. As is standard,
further references to the natural logarithm will be abbreviated log.

Figure 2.3: Logarithmic Distribution of Prime Numbers

It seems logical to conclude that there is some relation between n
π(n)

and

log(n). Indeed, it is presented without proof that as n tends towards infinity,
the error terms between the two functions tends towards zero.

Theorem 2.1. The Prime Number Theorem (PNT): π(n) ∼ n
log(n)

There are two immediate corollaries to the Prime Number Theorem:

Corollary 2.1.1. The nth prime is approximately n log(n).

Pf: Let {1, k} be a sequence of natural numbers with c primes. Then, on
average, the first prime will be p1 = k

c
, the second prime will be p2 = 2k

c
, and

the cth prime will be pc = ck
c

= k. But assuming the PNT, we know that for
large k, there are actually k

log(k)
, not k primes. So in general the nth prime in

the sequence will not be pn = nk
c

, but nk
k/ log(k)

= n log(k) w n log(n) for large
n.

Corollary 2.1.2. The probability an integer n is prime is about 1
log(n)

.

Pf: For large N , there are approximately n
log(n)

primes, so the average

distribution is about n
log(n)

· 1
n

= 1
log(n)

.
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3 Logarithmic Integral Function

The Logarithmic Integral Function is Li(x) =

∫ x

0

1

ln t
dt, or more precisely

Li(x) = limε→0+

(∫ 1−ε
0

dt
ln t

+
∫ x
1+ε

dt
ln t

)
, accounting for the singularity at x = 1

(recall that the logarithm function is undefined at numbers less than or equal
to zero, and that a definite integral need not be defined at it’s endpoints).

To grasp this function, we first plot the integrand, and observe the vertical
asymptote at t = 1. Since the log function grows slowly, it makes sense that
the inverse log decreases rapidly.

Figure 3.1: Inverse Natural Logarithm [7]

When we integrate the function, values first tend to negative infinity when
x ≤ 1 before switching back positive. This is seen in Figure 3.2 below.
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Figure 3.2: Logarithmic Integral [8]

It was Dirichlet who first conjectured that the logarithmic integral pro-
vided a better approximation for the prime counting function than the result
shown in Section 2.1. Figure 3.3 shows these two approximations.

Figure 3.3: Prime Number Theorem [9]

While it appears that Li(x) will consistently overestimate π(x) and x
log x

will consistently underestimate it, Littlewood proved in 1914 that Li(x) −
π(x) alternates between positive and negative values an infinite amount of
times. The first instance where Li(x) ≤ π (x) was originally thought to have

an upper bound at Skewes’ Number, the massive ee
ee

7.705

.
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4 Euler’s Product Formula

The Zeta Function is:

ζ(s) =
1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
+

1

7s
+ . . . (4.1)

Multiplying by the largest non-unit term 1
2s

:

1

2s
ζ(s) =

1

2s
+

1

4s
+

1

6s
+

1

8s
+

1

10s
+

1

12s
+

1

14s
+ . . . (4.2)

Subtracting Equation 4.2 from Equation 4.1:(
1− 1

2s

)
ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
+

1

11s
+

1

13s
+ . . . (4.3)

Multiplying by the largest remaining non-unit term 1
3s

:

1

3s

(
1− 1

2s

)
ζ(s) =

1

3s
+

1

9s
+

1

15s
+

1

21s
+

1

27s
+

1

33s
+

1

39s
+ . . . (4.4)

Subtracting Equation 4.4 from 4.3:(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1 +

1

5s
+

1

7s
+

1

11s
+

1

13s
+

1

17s
+

1

19s
+ . . . (4.5)

Continuing in this fashion, the denominators on the left-hand side will be
all of the prime numbers (this is the definition of prime; the subtraction step
eliminates any terms with prior factors). Meanwhile, the non-unit terms on
the right-side get smaller and smaller (and in fact tend towards zero as the
denominators on the left-side tend towards infinity). We are left with:
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. . .

(
1− 1

11s

)(
1− 1

7s

)(
1− 1

5s

)(
1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1 (4.6)

Dividing the equation by each term on the left to isolate ζ(s):

ζ(s) =

(
1

1− 1
2s

)(
1

1− 1
3s

)(
1

1− 1
5s

)(
1

1− 1
7s

)(
1

1− 1
11s

)
. . . (4.7)

Theorem 4.1. Euler’s Product Formula: ζ(s) =
∑
n

1

ns
=
∏
p

(
1− p−s

)−1

This is remarkable at first glance. There is an unexpected relationship
between the addition of natural numbers and multiplication of prime numbers
that involves the Zeta Function and Riemann’s famed hypothesis.
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5 Möbius Function

5.1 Derivation From Inverse Euler Product

Recall that the product of any m binomials is the sum of all the unique 2m

products of m terms. For instance, (a+b)(c+d) = (ac)+(ad)+(bc)+(bd) and
(a+b)(c+d)(e+f) = (ace)+(acf)+(ade)+(adf)+(bce)+(bcf)+(bde)+(bdf).
In the second case, the product of three binomials is the sum of eight products
of three terms (after selecting the first term in the first binomial, one has a
choice of 2 from the next binomial, and then 2 from the last binomial before
doing the same process for the second term in the first binomial).

We can say
1

ζ(s)
=
∏
p

(
1− p−s

)
from Section 4.1, which is a product of

binomials. Using the above logic, we can translate this infinite product into
an infinite sum by systematically selecting certain terms from each unique
binomial to multiply.

We originally have:

∏
p

(
1− p−s

)
=

(
1− 1

2s

)(
1− 1

3s

)(
1− 1

5s

)(
1− 1

7s

)(
1− 1

11s

)
. . . (5.1)

We elect for the first term in the sum to be the product of all 1’s (1 · 1 · 1 · · · ),
the second term in the sum to be the product of all 1’s except one term(−1

2s
· 1 · 1 · · ·

)
, the third term to be the product of all 1’s except one differ-

ent term
(
1 · −1

3s
· 1 · · ·

)
, and so on. This is:

1− 1

2s
− 1

3s
− 1

5s
− 1

7s
− 1

11s
− 1

13s
− 1

17s
− 1

19s
− 1

23s
− 1

29s
− . . . (5.2)

We then elect for the next terms in the sum to be a product of all 1’s ex-
pect for two terms. The first term in this infinite sum will be

(−1
2s
· −1

3s
· 1 · 1 · · ·

)
=

1
6s

, the next term will be
(−1

2s
· 1 · −1

5s
· 1 · · ·

)
= 1

10s
, and so on until we can

write 1
6s

+ 1
10s

+ 1
14s

+ 1
22s

+ 1
26s

+ . . . . After finishing with the −1
2s

’s we can
move on to the −1

3s
’s. We have −1

3s
· −1

5s
= 1

15s
, −1

3s
· −1

7s
= 1

21s
, and so on until
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we can write 1
15s

+ 1
21s

+ 1
33s

+ 1
39s

+ . . . . This same process will continue for
the −1

5s
’s, −1

7s
’s, and all the other remaining primes. Arranging these infinite

sums in decreasing magnitude and combining them with Equation 5.2, we
now have:

1− 1

2s
− 1

3s
− 1

5s
− 1

7s
− 1

11s
− 1

13s
− 1

17s
− 1

19s
− 1

23s
− . . .

+
1

6s
+

1

10s
+

1

14s
+

1

15s
+

1

21s
+

1

22s
+

1

26s
+

1

33s
+

1

35s
+

1

38s
+ . . .

(5.3)

Continuing in this fashion for all the three-combinations, we first have(−1
2s
· −1

3s
· −1

5s

)
= −1

30s
, followed by

(−1
2s
· −1

3s
· −1

7s

)
= −1

42s
, followed by

(−1
2s
· −1

3s
· −1
11s

)
=

−1
66s

, etc. After completing all the prime multiples of
(−1

2s
· −1

3s

)
= 1

6s
, we can

move on to the prime multiples of
(−1

2s
· −1

5s

)
= 1

10s
, or

(−1
2s
· −1

7s

)
= 1

14s
, or(−1

3s
· −1
11s

)
= 1

33s
, etc. Again arranging this infinite sum of infinite sums in

decreasing order by magnitude and combining the results with Equation 5.3,
we have:

1− 1

2s
− 1

3s
− 1

5s
− 1

7s
− 1

11s
− 1

13s
− 1

17s
− 1

19s
− . . .

+
1

6s
+

1

10s
+

1

14s
+

1

15s
+

1

21s
+

1

22s
+

1

26s
+

1

33s
+

1

35s
+ . . .

−1

30s
− 1

42s
− 1

66s
− 1

70s
− 1

78s
− 1

102s
− 1

105s
− 1

110s
− 1

114s
− . . .

(5.4)

This strategy is continued infinitely many times (for all the combinations
of four, all the combinations of 5, etc.) An interesting pattern begins to
emerge when we arrange Equation 5.4 by magnitude:

1− 1

2s
− 1

3s
− 1

5s
+

1

6s
− 1

7s
+

1

10s
− 1

11s
− 1

13s
+

1

14s
+ . . . (5.5)

The pattern follows from the strategy we’ve used to create the sum. First
note that all integers are either primes themselves or a product of unique
primes (down to order) by the Fundamental Theorem of Arithmetic. This
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means that each term in Equation 5.5 is unique (an integer can’t be the
product of both m and n unique primes for m 6= n). In the sum, notice
that any number which is a factor of a square prime is omitted from the
denominators in the sum (e.g. 54 is a factor of 32 = 9) since a given prime
in a binomial of Euler’s Inverted Product Formula is never repeated in a
different binomial. Meanwhile, we see that any number which is a product of
an odd amount of primes is prefixed by a negative in the denominator (e.g.
2 · 3 · 5 = −30). Finally, any number which is a product of an even amount
of primes is positive in the denominator (e.g. 2 · 3 = 6).

The coefficients to each term in Equation 5.5 form the Möbius Function.
The function takes arguments n in the from n = p1 · p2 · · · pr where each pi
is a unique prime. It is:

Definition 5.1. The Möbius Function, µ(n) =


1 if n = 1
0 if ∃a ∈ P : a2 | n

(−1)r if @a ∈ P : a2 | n
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5.2 Mertens Function and Consequences

With this in mind, we can write the Zeta Function in terms of the Möbius
Function. Piecing together equations 5.1 and 5.5, along with Definition 5.1,
we have:

Theorem 5.1.
1

ζ(s)
=
∑
n

µ(n)

ns
.

The Möbius Function is important to the Riemann Hypothesis in so much
as it’s cumulative value, the Mertens Function, M(k) =

∑k
n=1 µ(n) opens

another approach to solve the hypothesis. The Function is plotted below.

Figure 5.1: Mertens Function [10]

Stepping back, it is clear that the expected sum outcome of a fair binary
(-1,1) event of n trials is 0. Of course, getting exactly 0 is unexpected for large
n. Bernoulli was the first to show that the average sum is

√
n, which appears

to be a bound for the Mertens Function (the blue line in Figure 5.1). In 1985,
Odlyzko and Te Riele proved that the Mertens function was not bounded by√
n [11], a surprise given that the first counterexample appears no sooner

than 1016. A weaker statement, that the Mertens function is bounded by
n

1
2
+ε (the red line in Figure 5.1, where ε is epsilon, some arbitrarily small

positive number) is precisely as strong as Riemann’s Hypothesis.
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6 J-Function

6.1 Definition and Möbius Inversion

The Prime Number Function from Section 2 is a step function. We now
introduce another step function in an effort connect the Prime Counting
Function and the Zeta Function.

J(x) = π (x) +
1

2
π
(
x

1
2

)
+

1

3
π
(
x

1
3

)
+

1

4
π
(
x

1
4

)
+ . . .

=
∑
n

∑
pn≤x

1

n

(6.1)

Notice that this is not an infinite sum since π(y) is 0 whenever y < 2.
The Prime Counting Function and J-Function are compared in Figure 6.1
below (the red line is the J-Function). While the Prime Counting Function
and J-Function both increase by 1 whenever x is prime, the J-Function also
increases by 1

2
whenever

√
x is prime, by 1

3
whenever 3

√
x is prime, etc.

Figure 6.1: J-Function [12]

We’ve defined J in terms of π, and by the process of Mobius Inversion,

can write π in terms of J , π(x) =
∑

n
µ(n)
n
J
(
x

1
n

)
. We now try to express ζ

in terms of J .
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6.2 Writing Zeta in Terms of the J-Function

Recall that ζ(s) =
∏

p (1− p−s)−1 from Section 4.1. Taking the loga-

rithm, log (ζ(s)) = log
(

1
1− 1

2s

)
+ log

(
1

1− 1
3s

)
+ log

(
1

1− 1
5s

)
+ log

(
1

1− 1
7s

)
. . .

which is − log
(
1− 1

2s

)
− log

(
1− 1

3s

)
− log

(
1− 1

5s

)
− . . . by the properties of

logarithms. We are trying to connect the J-Function to the Zeta Function,
but first need to prove a lemma.

Lemma 6.1. We would like a closed formula for the geometric series.

The sum of the first n terms is S =
∑n−1

k=0 a · rk.
Expanding the series, we have S = a+ ar + ar2 + ...+ arn−1.
Multiplying by r, we then have Sr = ar + ar2 + ar3 + ...+ arn.
Subtracting the two equations and grouping terms, we arrive at the solution:

S =
n−1∑
k=0

a · rk = a ·
(

1− rn

1− r

)

When a = 1 and r ∈ (−1, 1), the geometric series simplifies to 1
1−r .

Taking the integral,
∫

1
1−r =

∫
1 + r + r2 + r3 + r4 + ..., which simplifies to

− log(1 − r) = x + x2

2
+ x3

3
+ x4

4
+ ... Since 0 < | 1

ps
| < 1, we can write each

term in Euler’s Product Formula as an infinite sum. We have:

log [ζ(s)] =

-log
(
1− 1

2s

)
− log

(
1− 1

3s

)
− log

(
1− 1

5s

)
− · · · =[

1
2s

+
(

1
2
·
(

1
2s

)2)
+
(

1
3
·
(

1
2s

)3)
+
(

1
4
·
(

1
2s

)4)
. . .
]
+[

1
3s

+
(

1
2
·
(

1
3s

)2)
+
(

1
3
·
(

1
3s

)3)
+
(

1
4
·
(

1
3s

)4)
. . .
]
+[

1
5s

+
(

1
2
·
(

1
5s

)2)
+
(

1
3
·
(

1
5s

)3)
+
(

1
4
·
(

1
5s

)4)
. . .
]
+

. . .

=
∑
p

∑
n

(
1

n
· 1

pns

)
(6.2)
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Any term in this infinite sum of infinite sums can be written as an integral.
Notice, 1

n
· 1
pns = s ·

∫∞
pn

1
n
x−s−1 dx since

∫∞
pn

1
n
x−s−1dx = 1

n

(−1
s
· 1
xs

) ∣∣∞
pn

=

1
n

[
(0)−

(
−1
s
· 1
pns

)]
= 1

ns
× 1

pns which is 1
s

multiples of 1
n
× 1

pns .

Rewriting Equation 6.2 with integrals and factoring out s, we have:

1

s
log [ζ(s)] =[(∫∞

2
1
1
· x−s−1 dx

)
+
(∫∞

22
1
2
· x−s−1 dx

)
+
(∫∞

23
1
3
· x−s−1 dx

)
+ . . .

]
+[(∫∞

3
1
1
· x−s−1 dx

)
+
(∫∞

32
1
2
· x−s−1 dx

)
+
(∫∞

33
1
3
· x−s−1 dx

)
+ . . .

]
+[(∫∞

5
1
1
· x−s−1 dx

)
+
(∫∞

52
1
2
· x−s−1 dx

)
+
(∫∞

53
1
3
· x−s−1 dx

)
+ . . .

]
+

. . .

=
∑
p

∑
n

(∫ ∞
pn

1

n
· x−s−1 dx

)
(6.3)

Now consider the step function g (x, pn) =

{
1 if x ≥ pn

0 if x < pn

}
[13]. See

that

∫ ∞
0

g (x, pn)x−s−1 dx =

∫ pn

0

g (x, pn)x−s−1 dx +

∫ ∞
pn

g (x, pn)x−s−1 dx.

But this can simplify to

∫ ∞
0

g (x, pn)x−s−1 dx =

∫ ∞
pn

x−s−1 dx since g (x, pn)

is 0 whenever 0 ≤ x ≤ pn and 1 whenever x > pn.

Integrals are transparent to multiplying factors, so by subsituting the step
function into Equation 6.3, we can write:

1

s
log [ζ(s)] =

∑
pn≤x

∑
n

(∫ ∞
0

1

n
g (x, pn)x−s−1 dx

)
(6.4)

The sum of the integrals is equal to the integral of the sums [14], so
recognizing the definition of the J-Function in Equation 6.1, we can finally
say that:

1

s
log [ζ(s)] =

∫ ∞
0

J(x)x−s−1 dx (6.5)
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7 Explicit Formula

The main result of Riemann’s 1859 paper was providing an explicit for-
mula connecting the zero’s of the Zeta Function with the distribution of
prime numbers, seen below in Equation 7.1. His proof relied on the prop-
erties of Equation 6.5. We’ve already shown that the logarithmic integral
Li(x) is a decent approximation for the number of primes up to x, π(x), but
Equation 7.1 provides an exact formula connecting the distribution of the
non-trivial zeros of the Zeta Function to the Prime Number Function via the
J-Function. The truth of this formula was proved to be independent to the
truth of Riemann’s Hypothesis by von Mangoldt in 1895.

J(x) = Li(x)−
∑
ρ

Li(xρ)− log 2 +

∫ ∞
x

1

t(t2 − 1) log t
dt (7.1)

We already have a grasp on three of the four terms. The principle term is
the aforementioned logarithmic integral defined in Section 3. The third term
is a constant, equal to about 0.693. The fourth term can never be larger than
0.15. So the main focus of this section will be on the second term.

Examine each xρ in the second term, where ρ represents the non-trivial
zeros of the zeta function. These zeros all occur on the critical strip (provided

Riemann’s Hypothesis is true), so each xρ can be written in the form x
1
2
+bi

for real b. The magnitude of each of these xρ’s is then
√
x, so for a given x,

the non-trivial zeros of the zeta function form a circle of radius
√
x in the

complex plane.
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Figure 7.1: Critical Strip And xρ With Selected Zeros

Taking the logarithmic integral of each xρ we see the circle transformed
to a counter-clockwise spiral, centering on πi. Since every non-trivial zero
has a complex conjugate that is also a zero, there is also a clockwise spiral
on the negative imaginary axis centered around −πi. The spirals get bigger
as x gets bigger, and eventually the spiral in the positive imaginary axis and
negative imaginary axis overlap (at about x = 400).

Figure 7.2: Li(xρ)
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The final part of the second term is the summation. We already know
each non-trivial zero has a complex conjugate, so for any zeta zero ρ = a+bi,
the imaginary part cancels out (ρ+ ρ̄ = (a+ bi) + (a− bi) = 2a). Since both
spirals are closing in on πi and −πi, the real parts of the summation should
close in on 0.

Recall the Möbius Inversion in Section 6. To find the number of primes
up to a number, say 1,000,000, we can say π(1, 000, 000) = J(1, 000, 000) −
1
2
J(
√

1, 000, 000) − 1
3
J( 3
√

1, 000, 000) + .... So to calculate the number of
primes up to 1,000,000, we just need to execute Equation 7.1 for the N roots
of 1,000,000 greater than 2. We can see the totality of this calculation (up to
two digits) in Figure 7.3 below. See that the original approximation we had
for π(1, 000, 000), Li(1, 000, 000) ≈ 78627.55, is only about 130 (-0.15%) less
than the actual value of 79498.

Figure 7.3: Calculation of π(1, 000, 000)
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[13] Jack LeGrüß. 2020, ”Writing Zeta Function In Terms Of The J-
Function”, https://math.stackexchange.com/q/3864753

[14] Flaherty, Liam. 2019, ”Euler’s Identity From First Principles”.

22


