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1 Set Theory And Basic Probability

1.1 Definitions

Definition 1.1. Sample Space (£2): the set of all possible outcomes in an experiment. For
example, the sample space for the outcome of rolling two fair dice is Q2 = {(4,7) : 1 <1i,j < 6}.

Definition 1.2. Probability Measure (P): A function P : (A C Q) — [0, 1] satisfying
P(Q) =1, ACQ) — P(A) > 0, and Al,A2 dlSJOlIlt — P(Al UAQ) = P(Al) + P(AQ)

Definition 1.3. Combination: The number of ways one can select r elements from a set of
n when the order of the selection doesn’t matter. When the elements are not replaced after
each selection, the number of combinations is the binomial coefficient (:) = (n—n—7"')'7“' When
the elements are replaced after each selection, the number of combinations is ("+:_1). For
example, the number of ways a company can divide 10 people into three groups of size three,

three, and four is (140) (g) = oo 10— 4900 since the order in which the people are

T 6413131 T 41313!
selected to be in a group doesn’t matter (combination), since a person can’t be in two groups
(combination without replacement), and since after selecting for the first group there is a

remaining set of 6 to select the second group from, after which the third group is determined.

Definition 1.4. Permutation: The number of ways one can select r elements from a set of
n when the order of the selection matters. When the elements are not replaced after each
selection, the number of permutations is r!(f) = (n+‘r)' When the elements are replaced
after each selection, the number of permutations is n”. For example, the number of four letter
“words” is 26* while the number of assortments of gold, silver, and bronze medal winners in

a competition of 10 is 17—0!! =10-9-8 = T720.

Definition 1.5. Marginal Probability, P(A): The probability an event in the sample
space occurs, without conditioning on another event. For example, the probability of rolling

a five with a fair dice is %.

Definition 1.6. Conditional Probability, P(A|B): The probability an event A in the

sample space occurs, given that the event B has occurred. In general, P(A|B) = Pgé;?).
Bayes’ Theorem, P(A|B) = %P(B\A), may be useful in situations where we have some

conditional probabilities but not others. For example, the probability of rolling a total greater
than 9 with the role of two fair dice, with the knowledge that your first roll is a five, is %

Definition 1.7. Independence: Events A and B are independent provided the conditional
probability of A given B is the marginal probability of A; P(AN B) = P(A)P(B). For
example, the probability one is six feet tall is likely independent of the probability that one
catches COVID.

Definition 1.8. Disjoint (Mutually Exclusive): Events A and B are disjoint provided
A and B cannot both occur; P(AN B) = 0. For example, one cannot be both six feet tall
and five feet tall.
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1.2 Theorems And Further Examples

> mytable

Combin. W/0 Replacement Combin. W/ Replacement Perm. W/0 Replacement Perm. W/ Replacement
1 ab aa ab aa
2 ac ab ac ab
3 ad ac ad ac
4 ae ad ae ad
5 bc ae ba ae
6 bd bb bc ba
7 be be bd bb
8 cd bd be bc
9 ce be ca bd
10 de cc cb be
11 v cd cd ca
12 v ce ce chb
13 v dd da cc
14 v de db cd
15 v ee dc ce
16 v v de da
17 v v ea db
18 v v eb dc
19 v v ec dd
20 v v ed de
21 v v " ea
22 v v " eb
23 v v " ec
24 v v " ed
25 v v " ee
26 v v " t
27 Binom Coeff (n k): P/k!=n!/(n-k)!k! Binom Coeff: (n+k-1 k) Gen Formula: Perm=n!/(n-k)! Gen Formula: nAk
28 SU/L(5-2)121]=10 (5+2-1)!/[(5-2)12!1]=15 51/0(5-2)12!]=20 542=25

Figure 1.1: Select Two Objects From A Set Of Five
###tcombinatori ce##tss
selectset=5 #example, number of items to choose from#

selectchoose=2 #example, number of items to select#

###In combinations, order doesn't matter, i.e. (a,b)=(b,a)###
a-data. frame( #without replacement, how many different ways can you select r objects from a set of size n7#
combinations(
n-=selectset, r-selectchoose,
v=letters[l:selectset], repeats.allowed=F))
a=data.frame(pasteO(al,1],al,2]))
colnames (a)="Combin. W/0 Replacement"

dim(a) #gives size of dataframe in terms of x rows by y columns#

choose(selectset,selectchoose) #can also use binomial coefficient formula (n choose k function) to get size#

a #general formula is P/k! or [n!/((n-k)!k!)]#

b=data. frame( #with replacement, how many different ways can you select r objects from a set of size n?#

combinations(
n=selectset, r=selectchoose,
v=letters[l:selectset], repeats.allowed=T))
b=data.frame(paste0(b[,1],b[,2]))
colnames (b)="Combin. W/ Replacement"
dim(h)
choose(selectset+selectchoose-1, selectchoose) #can again use binomial coefficient formula (n choose k function) to get size#
b #general formula is similar to above, [(n+k-1)!/((n-1)'k!)1#

Figure 1.2: R Script To Get Combinations
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1.3 Problems

1.73) A system has n independent units, each of which fails with probability p.
The system fails only if k or more of the units fail. What is the probability that
the system fails?

The probability the first k& units fail is p*, so we can already give an unambitious lower
bound. The probability that ezactly k units fail is calculated by multiplying the probability
that k units fail (p¥) by the probability that n — k units don’t fail ((1—p)"~*) by the number
of ways that exactly & units can fail (call it m).

Observe we can count the number of ways that exactly k£ units can fail by using the
binomial coefficient since doing so is equivalent to selecting k objects from a set of size
n without replacement. So we can improve the bound to (})(p)*(1 — p)"~*, which is the
probability that exactly £ units fail.

We also need to account for the probability that exactly & + 1 units fail, exactly k + 2
units fail, ..., and all n of the units fail. With the same reasoning as above, we see:

(-
(k: 1) =
(

k‘+2 1 n—k—2
. 2) p)

P(k units fail)

P(k + 1 units fail)

P(k + 2 units fail) =

+ 3 + 3

P(n units fail)' — (Z) (p)"(1—p)° =p"

So we see that the probability the system fails is (’;) (p)? (1 — p)n—J
=k

1.33) An elevator containing five people can stop at any of seven floors. What
is the probability that no two people get off at the same floor? Assume that
the occupants act independently and that all floors are equally likely for each
occupant.

The first person has seven floors to choose from, the second person also has seven floors
to choose from, etc. So the total number of ways that the five people can get off is 7°. There
are 7 choices for the first person, and after the first person makes their choice, the second
person has six choices to ensure they don’t get off on the same floor, etc. So the probability

7

6
[T [T
that no two people get off on the same floor is =3~ = =~ = 234;%01.
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2 Random Variables

2.1 Definitions

Definition 2.1. Random Variable: A function X : €2 — R. Random variables can be
categorized as either discrete (when the random variable can take on a finite or at most
countably infinite number of values) or continuous. For example, if a coin is flipped twice
the sample space is {HH, HT,TH,TT}, and a possible random variable could be the total
number of heads in the observation.

Definition 2.2. Support: The set of values which a random variable can take on (its
image). For example, if a random variable is the total number of heads minus the total
number of tails after two coin flips, the support of the random variable is {2, 0, —2}.

Definition 2.3. Probability Mass Function (PMF): A function p : R — [0, 1] defined by
px(z;)=P(X=x;) where X is a discrete random variable and z; is a member of the sup-
port. For example, if an experiment is flipping a fair coin twice and the random variable gives
1/4, z=+2

the difference between the number of heads and tales, the PMF is p(z) = 12 0
) T =

Definition 2.4. Probability Density Function (PDF'): A piece-wise continuous function
f R — [0,1] such that f(z) > 0 and ffooo f(z)dx = 1 (where z is in the support of a
continuous random variables X). Probabilities for continuous random variables must be
given on an interval; the PDF is given by P(a < X <b) = f:f(x) dx. For example, if an
experiment measures the number of years a person lives, the random variable could give the
probability a person dies between a and b years.

Definition 2.5. Cumulative Distribution Function (CDF): A monotone increasing

function F': R — [0, 1] defined by F'(z)=P(X < x) where lim F(z)=0and lim F(x) = 1.
Tr——00 T—r00

In contrast to PMF’s or PDF’s, which are often denoted by lowercase letters, CDF’s are

usually denoted with capital letters. They can be used to find the p** Quantile, which is

the value z, such that F(x,) = p.

Definition 2.6. Expected Value (E(X) or px): Informally, the mean of a large number
of independent outcomes of a random variable. Expected value is the first moment. If X
is a discrete random variable with probability mass function p and support z;, then the

expected value is given by > x; - p(x;) (provided the sum converges). If X is a continuous
i€N

random variable with probability density function f, then the expected value is given by

[ a - f(x)dz (provided the integral converges).

Definition 2.7. Variance (V(X) or o%): Informally, the dispersion of a random variable.
Variance is the second central moment. Where E(X) is the expected value of a random
variable X, the variance is V(X ) = E(X?) — E(X)?. The standard deviation is the square
root of variance, and is useful because it is in the same units as the random variable.

Definition 2.8. Moment Generating Function (MGF): M(t) = E(e'¥). The £*® deriva-
tive of the MGF evaluated at zero gives the k" raw moment, while the k" derivative of
the MGF evaluated at the mean gives the k'" central moment.
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2.2 Theorems And Further Examples

Theorem 2.1. Expected Value Is Linear: For scalars a and b, E(aX + b) = aE(X) + b
Proof.

[e.e]

E(aX +b) = /OO (ax +b)fx(z)dx = / axfx(z)+ bfx(x)dz

- /OO az fx (2) dx+/beX(x)dx

o0

:a/foX(x)dx—l—b/ZfX(x)dx

=aE(X)+0b
|
Theorem 2.2. Variance Is Translation Invariant: For scalars a and b, V(aX + b) =
a*V(X)
Proof.
V(X +b) =E ( (aX +b) — (aX+b))2}
—E|(aX +b— aB(X) - b)’| =E|(aX - aB(X))’|
— E[(a?X? - 2:°E(X)X + a2E(X)2)} —E [a2 (X2 - 2B(X)X + E(X)2)]
aQE[ ] = 2V(X)
|

Theorem 2.3. Markov’s Inequality: For any positive random variable X where expecta-
tions exist, P(X > t) <E(X)/t.
Proof.

IE(X):/OO fo(x)dx:/t xfx(x)dx+/tooxfx(x)dx

—00 —0o0

> /tooxfx(x)da: > /tootfx(x)dx

zt/oofx(:z:)dac:t-P(th)

Theorem 2.4. Chebyshev’s Inequality: For any € > 0, P(|X —E(X)| > ¢) < V(X)/e2
Proof.

P(|X —E(X)| > ¢) = P((X —E(X))? > &*) Apply Markov Inequality to (X — E(X))2
<E((X —E(X))")/e* = V(X)/e?
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2.3 Problems

2.31) Phone calls are received at a certain residence as a Poisson process with
parameter A\ = 2 per hour.

a. If Diane takes a 10-min shower, what is the probability that the phone rings
during that time?

The pmf for a Poisson process is P(X=k)=27
10 minute interval is the complement of the probability the phone doesn’t ring in a 10 minute
interval. The probability that zero calls come in is given by the parameter A = 10 - 60, so the

probability the phone rings while Diane is in the showeris 1 - P(X =0) = 1—e ~3 ~ 28.35%.

b. How long can her shower be if she wishes the probability of receiving no phone
calls to be at most .57

The probability the phone doesn’t ring in a ¢ minute interval is given by P(X = 0) = e~'30.
We want to maximize ¢ where e "3 < 0.5. Then we need ¢ < —30 In(0.5) ~ 20.79 minutes.

2.40) Suppose that X has the density function f(x) = cz? for 0 < =z < 1
and f(x) = 0 otherwise. Find ¢, find the cumulative distribution function, and
determine P(.1 < X <.5)

The probability density function is the function f such that Fx(z), the cumulative distri—
bution function, is equal to f_zoo f(t)dt. Here f(x) =0 for z <0, so Fx(z f f(t)
Jo f@)dt = [ ct*dt = £t [§= £a® for values of z € [0, 1], while Fx(z) = O for x < 0 and
Fx(z)=1for x > 1.

Since f only gives non-zero probabilities in the interval [O, 1], the integral of the pdf over
this interval must be 1, i.e. Fx(x)= [ f(z)dz=S2% |} =¢ =1 and so ¢ = 3.

As X is a continuous random Variable to find P( < X < .5), we can integrate the pdf
with the limits 0.1 and 0.5. See f01 ) de=<2% (35 =Bla3 95 =0.5% — 0.1 = 0.124
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4.5) Let X have the density f(z) = 122 for x, o € [—1,1]. Find E(X) and V(X).

E(X):/_Zx-f(x)dx:/_llx-f(x)dx

_1/1 o — L :U2+a:173 1 (L ey _(1_a\]_a
—o ) T\ T3 ) T \e T3 2 3)| 73

o
~
[N}
Il
| — |
DN | —
\\H
8
[\
+
o)
S
w
ISH
S
—_
|
N~

V(X) = E(X?) - E(X)? = E(X?) - (5

2

o[ e ()=
643 ()] (5) 2 0) 5%

2 \3

1) Let X have the density f(x) = %(i)“‘le_ﬁ/Cc whenever z > 0 for positive
values of a and 3. Determine E(X") to calculate the mean and variance of X.
T'(«

Note that since f is a valid density, [~ %(%)a“e_ﬁ/m dr=1 = [7 (1)oHlep/x de="33"
as « and (3 are constants that don’t depend on the integrating variable. Then observe:

Y __ Ooxr ﬁa l OH_le—B/x T
2o = [ i (3) !

/BOC > T 1 ot —,B/CC 3

= - e dx Properties of exponents
I(a) Joo

= 8 / —lamrt) o =B/e gy Same kernel as the note above
I(a) Joo

_ g Ta-r) _ gpla-r)
Lla) o I(a)

The mean is the first moment, so (recalling that I'(a + 1) = al'(a)):
Do —[1)) MNa—1) [a—1) I6;
E(X)=EX") =pll——+ = = =
(X) (X)) =5 INEe) BF(@—1+1) 5(a—1)F(a—1) a—1

The variance is the second central moment, so:

_ 2y _ 2 apl(a—[2]) _ B2 _ B°T(a —2) _ 8
V) =B — B = B0 e S Ta— 151 (a1
e I R R R
(a—1DI'(a—=1) (a—1)? (a—1(a—=2) (a—1)? (a—1)*a—-2)
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3 Common Distributions

3.1 Discrete Random Variables

1) Bernoulli Distribution: The random variable takes on values either 1 (success) or 0
(failure) with probability p and 1 — p respectively. For example, a coin is flipped that lands
on heads with probability p. The random variable takes value 1 if the coin lands on heads,
and 0 if the coin lands on tails.

Notation and Parameter(s): X ~ Bern(p) Support: k € {0,1}
0, k<0

k(1 _ o\k
PMF: p(k) = 5(1 P x;}gﬁ CDF: F(k)=4{1-p, 0<k<1
) x )

1, E>1
Bernoulli Probability Mass Function (p=0.55) Bernoulli Cumulative Distribution Function (p=0.55)
] 5 o |
z ° -
K e 7
=}
g 4
= 3 o
e T T T T T T CE T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Random Variable Random Variable
Figure 3.1: Bernoulli PMF Example Figure 3.2: Bernoulli CDF Example
##Bernoulli Distribution#####
arameters#i#
p=0.55 #the probability of success#
HEHPMF###
x=seq(from=0, to=1, by=1)
y=dbern(x,p) #use Rlab package#
plotix, y, type="h", #h for histogram#

xTim=c(min(x),max(x)), ylim=c(0,1),

Twd=5, col="blue",

ylab="Probability", xlab="Random Variable (Success Or Failure)",
main=paste0("Bernoulli Probability Mass Function (p=", p, ")"))

#HHCDOF#EE

x=seq(from=0, to=1, by=0.001)

y=ifelse(x<1, 1-p, 1) #pbern doesn't work as intended#
plotix, vy, type="s", #s for step, 1 for line#

x1im=c(min(x)-0.1,max(x)+0.1), ylim=c(0,1),
ylab="Cumulative Probability", xlab="Random variable (Success Or Failure)",

main=paste0("Bernoulli Cumulative Distribution Function (p=", p, ")"))
##H#ESimulations And Questions###

mysim=rbern(100, p) #100 random simulations from Bernoulli#

Figure 3.3: Bernoulli R Script

10
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2) Binomial Distribution: The random variable is the total number of successes after n
independent Bernoulli Trials. For example, the random variable could be the number of hits
a baseball player with a “true” batting average of 0.3 gets in 5 at bats.

Notation and Parameter(s): X ~ Binom(n, p) Support: k € {0,1,...,n}
k
. _ (") ,k n—k . _ AP n—i
PMEF: p(k) = (3)p"(1—p) CDF: F(k) = E%)(i)p (1-p)
7=
Binomial Probability Mass Function (p=0.3, n=5) Binomial Cumulative Distribution Function (p=0.3, n=100)
N N ,
o _| 3 @
o g o
g 8
7 £
g 34 g 3
i E N
e | I I [} . © 9|
@ T T T T T T e T T T T T T
0 1 2 3 4 5 0 20 40 60 80 100
Random Variable (# Of Successes In n Indepenent Bernoulli Trials) Random Variable (# Of Successes In n Indendent Bernoulli Trials)
Figure 3.4: Binomial PMF Example Figure 3.5: Binomial CDF Example
######BInomial Distribution###ss
#number of successes in n Bernoulli Trials, each independent with probability p#
#H#EParameters###
p=0.3 #the probability of success (e.g. "true' batting average)#
trials=5 #number of hits in 5 at bats#
FHEPMF###
x=seq(from=0, to=trials, by=1)
y=dbinom(x, size=trials, prob=p) #use Rlab package#
plot(x, vy, type="h", #h for histogram#

x1im=c(min(x),max(x)), ylim=c(0,1),

Twd=5, col="blue",ylab="Probability",

xlab="Random variable (# 0f Successes In n Indepenent Bernoulli Trials)",
main=paste0("Binomial Probability Mass Function (p=", p, ", n=", trials, ")"))

FHECDF##H#

x=seq(from=0, to=100, by=1)

y=pbinom(x, size=100, prob=p)

plot(x, vy, type="s", #s for step, 1 for line#
xTim=c(min(x)-0.1,max(x)+0.1), ylim=c(0,1),
ylab="Cumulative Probability",
xlab="Random variable (# Of Successes In n Indendent Bernoulli Trials)",

main=paste0("Binomial Cumulative Distribution Function (p=", p, ", n=100)"))

f#HESimulations And Questions###
mysim=rbinom(100, 100, p) #100 random simulations from Binomial#
pbinom(30, size=100, prob=p) #probability get 30 or Tless in 100 trials of prob=p#

Figure 3.6: Binomial R Script

11
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3) Geometric Distribution: The random variable is the total number of failures before
the first success in a succession of independent Bernoulli Trials. For example, the random

variable could be the number of hitless at bats baseball player with a “true” batting average
of 0.3 has before his first hit.

Probability

Notation and Parameter(s): X ~ Geom(p) Support: k€ N
0 k<0
_ )
PMF: p(k) = (1 — p)k~p CDF: F(k) = "
1—(1—pH+H k>0
Geometric Probability Mass Function (p=0.3, n=25) Geometric Cumulative Distribution Function (p=0.3, n=100)
g .
7 5 @
_ o
2 o
= § °
A |

87 Ill"llllullollllol-- OO,

5] T T T T T T ° T T T T T T
0 5 10 15 20 25 0 20 40 60 80 100
Random Variable (# Of Failures Before 1st Success In Independent Bernoulli Trials) Randem Variable (# Of Failures Before 1st Success In Independent Bernoulli Trials)

Figure 3.7: Geometric PMF Example Figure 3.8: Geometric CDF Example
##t##tGeometric Distribution##sss
#number of independent failures with probability 1-p before 1st success#
#"shifted” geometric is when define as number of trials for 1st success#
#H#Parameters###
p=0.3 #the probability of success (e.g. '"true' batting average)#
trials=25 #e.g. number of at bats before 1st hit#
BEEPMF###
x=seq(from=0, to=trials, by=1)
y=dgeom(x, prob=p) #use Rlab package#
plot(x,y,type="h", #h for histogram#
xTim=c(min(x) ,max(x)), ylim=c(0, max(y)),
Twd=5, col="blue", ylab="Probability",
xlab="Random variable (# Of Failures Before 1st Success In Independent Bernoulli Trials)",
main=paste0("Geometric Probability Mass Function (p=", p, ", n=", trials, ")"))
HEECDF##H

x=seq(from=0, to=100, by=1)
y=pgeom(x, prob=p)
plot(x,y,type="s", #s for step, 1 for Tine#
xT1im=c(min(x)-0.1,max(x)+0.1), ylim=c(0,1),
ylab="Cumulative Probability",
xlab="Random variable (# Of Failures Before 1st Success In Independent Bernoulli Trials)",
main=paste0("Geometric Cumulative Distribution Function (p=", p, ", n=100)"))
###simulations And Questions###
mysim=rgeom(100, p) #100 random simulations from Geometric#
pgeom(30, prob=p) #probability get 30 or less in 100 trials of prob=p#

Figure 3.9: Geometric R Script

12
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4) Negative Binomial: A generalization of the geometric, the random variable is the total
number of failures before k successes in a succession of independent Bernoulli Trials. For
example, the random variable could be the number of at bats baseball player with a “true”
batting average of 0.3 has before getting five hits.

Probability

Notation and Parameter(s): X ~ NB(p, ) Support: k € N
PMF: p(k) = (;2)p (1 —p)*~

0.00 0.02 0.04 008

Negative Binomial Probability Mass Function (p=0.3, k=5) Negative Binomial Cumulative Distribution Function (p=0.3, k=5)
. ,
g 31
a
[
£ u
2 <«
§ ©
=
[§)
d "““H 2 4
T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Random Variable (# Of Failures Before k Successes In Independent Bernoulli Trials) Random Variable (# Of Failures Before k Successes In Independent Bernoulli Trials)

Figure 3.10: Negative Binomial PMF Ex. Figure 3.11: Negative Binomial CDF Ex.

###f##ENegative Binomial (Pascal) Distribution###ss
#generalizes geometric#
#"How many independent trials w/ prob of success p until k success?"#

#HEParameters##f
p=0.3 #the probability of success (e.g. 'true' batting average)#
successes=5 #e.g. number of hitless at bats before 5th hit#
FHEPMF £
x=seq(from=0, to=100, by=1)
y=dnbinom(x, size=successes, prob=p) #use Rlab package#
plot(x,y,type="h", #h for histogram#
xTim=c(min(x),max(x)), ylim=c(0, max(y)),
Twd=5, col="blue", ylab="Probability",
xlab="Random variable (# Of Failures Before k successes In Independent Bernoulli Trials)",
main=paste0("Negative Binomial Probability Mass Function (p=", p, ", k=", successes, ")"))
FHECDF###

x=seq(from=0, to=100, by=1)
y=pnbinom(x, size=successes, prob=p)
plot(x,y, type="s"
xTim=c(min(x),max(x)), ylim=c(0,1),
ylab="Cumulative Probability",
xlab="Random variable (# Of Failures Before k Successes In Independent Bernoulli Trials)",
main=pasteld("Negative Binomial Cumulative Distribution Function (p=", p, ", k=", successes, "}"))

#s for step, 1 for line#

##Simulations And Questions###
mysim=rnbinom(n=100, size=5, prob=p) #100 random simulations from Negative Binomial#
pnbinom(5, size=100, prob=p) #probability get 5 or less in 100 trials of prob=p#

Figure 3.12: Negative Binomial R Script

13



3.1 Discrete Random Variables

Flaherty, 14

5) Hypergeometric: The random variable is the total number of successes when sampling
m elements without replacement from a set of size n, of which there are r desired elements.
For example, the random variable could be the number of matched numbers lottery numbers

after selecting 6 numbers from a set of 100.

Notation and Parameter(s): X ~ HG(r,m,

PMF: p(k) = Wt)

n
m

Hypergeometric Probability Mass Function (n=15, r=5, k=10)

n)

Support: k€ {0,1,...,r}

Hypergeometric Cumulative Distribution Function (n=15, r=5, k=10)

<+ _
° = -
3 ©
L] o . =
0'7 W O
z g
a o
8 '
g ° 2 =
a T ©
- _| =3
o £ -
3 e L
o | 1 2
° i T T T T T ° T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5

Random Variable (# Of Positive Selections In k Trials From Set Of Size n)

Figure 3.13: Hypergeometric PMF Example

Random Variable (# Of Positive Selections In k Trials From Set Of Size n)

Figure 3.14: Hypergeometric CDF Example

of socks in a drawer#

##f##HHypergeometric Distribution####s

#"0f set with n objects, r of which are desirable,...#

#...how many of r are chosen after m selections (w/o replacement)?"#
#i#Parametersif#

population=15 #e.g. number

success=5 #e.g. number

selection=10 #e.g. number

xTim=c(min(x),max(x)), ylim=c(0, max(y)),

of black socks#
of socks picked from drawer#

#use Rlab package#

BEEPVMF###

x=seq(from=0, to=success, by=1)

y=dhyper(x, m=success, n=population-success , k=selection)
plot(x,y, type="h", #h for histogram#

Twd=5, col="blue", ylab="Probability",
xlab="Random variable (# Of Positive Selections In k Trials From Set Of Size n)",
main=pastel("Hypergeometric Probability Mass Function (n=", population,

", r=", success, ", k=", selection, ")"))

HEHCDF###
x=seq(from=0, to=success, by=1)

y=phyper(x, m=success, n=population-success , k=selection)

nom

plot(x,y,type="s",
xTim=c(min(x),max(x)), ylim=c(0,1),
ylab="Cumulative Probability",

#s for step, 1

for Tine#

xlab="Random variable (# Of Positive Selections In k Trials From Set 0of Size n)",

main=paste0("Hypergeometric Cumulative Distribution
", r=", success, ", k=", selection, ")")

###ESimulations And Questions###
mysim=rhyper (100, m=success, n=population-success , k=sel
phyper(0, m=success, n=population-success , k=selection)

Function (n=", population,

)

ection) #100 random simulations from Hypergeometric#

#probability get all 10 white socks=0.03%#

Figure 3.15: Hypergeometric R Script

14



3.1 Discrete Random Variables

6) Poisson: The random variable is the number of events occurring in a fixed interval ¢,

should the occurrence of the events occur independently of the last event, and should the
mean number of events occurring in any time period be known. For example, the random
variable could be the number of calls received in a twenty minute increment at a call center

that receives an average of 10 calls an hour.

Probability

0.00 0.02 0.04 0.06

Flaherty, 15

Notation and Parameter(s): X ~ Pois()) Support: k € N
. DY
PMF: p(k) = 3ye
Poisson Probability Mass Function (3. = 30) Poisson Cumulative Probability Function (A = 30)
- O
- o © |
© o
“ “ | |
— o
“ “ 2 o« |
s ©
. 2 i
B — ..ullll" ||||||Iu © o
I I T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Random Variable Random Variable
Figure 3.16: Poisson PMF Example Figure 3.17: Poisson CDF Example

##Poisson Distribution#####
#"'What is prob get x in y time given average n"#
#Limit of Binomial Distribution w/ large n and small p#

#H#Parameters###

my lambda=30 #e.g. number of calls an hour#
HREPMF###

x=seq(from=0, to=100, hy=1)

y=dpois(x, mylambda) #use Rlab package#
plot(x,y,type="h", #h for histogram#

xTim=c(min(x) ,max(x)), ylim=c(0, max(y)),
Twd=5, col="blue", ylab="Probability", xlab="Random variable",
main=bguote("Poisson Probability Mass Function (" * lambda==.(mylambda) * ")"))

FRHECDF#4#
x=seq(from=0, to=100, hy=1)
y=ppois(x, mylambda)
plot(x,y, type="s", #s for step, 1 for Tine#
xTim=c(min(x) ,max(x)), ylim=c(0,1),
ylab="Cumulative Probability", xTab="Random variable",
main=bquote("Poisson Cumulative Probability Function (" * lambda==.(mylambda) = ")"))

#H#simulations And Questions###
mysim=rpois (100, mylambda) #100 random simulations from Poisson#
ppois (3, mylambda) #probability get all three calls in 1 hr span#

Figure 3.18: Poisson R Script
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3.1 Discrete Random Variables Flaherty, 16

7) Discrete Uniform: The random variable is an integer from the range [a, b]. For example,
the random variable could be the number rolled from a fair dice, and the support would be
the integers one through six.

Notation and Parameter(s): X ~ DU(a, b) Support: k € {a,a+1,...,b}
. _ 1
PMF: p(k) = —a
Discrete Uniform Probability Mass Function (n=6) Discrete Uniform Cumulative Distribution Function (n=6)
. - ]
@ a @ |
o © o
£ | s
2 s
£ 5 § 5
n g n
o || I ] ¢ 5.
° T T T T T T @ T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
Random Variable Random Variable

Figure 3.19: Discrete Uniform PMF Example Figure 3.20: Discrete Uniform CDF Example

###Discrete Uniform Distribution###i#
HEFParameters###
size=6 #fair dice#

FEEPMF##

x=seq(from=1, to=size, by=1)

y=rep(1l/size, size)

plot(x,y, type="h", #h for histogram#
xTim=c(min(x) ,max(x)), ylim=c(0, 1),
Twd=5, col="blue", ylab="Probability", xlab="Random variable",
main=pastel("Discrete Uniform Probability Mass Function (n=", size, ")"))

HFEFCDF#4#
x=seq(from=1, to=size, by=1)
y[1]=1/size; for (i in 2:size) {
: ylil=y[i-1T+y[i]
1
plot(x,y, type="s", #s for step, 1 for line#
xTim=c(min(x) ,max(x)), ylim=c(0,1),
ylab="Cumulative Probability”, xTlab="Random variable",
main=paste0("Discrete Uniform Cumulative Distribution Function (n=", size, ")"))

###simulations And Questions###
mysim=sample(size, 100, replace=T) #100 random simulations from uniform#

Figure 3.21: Discrete Uniform R Script
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3.2 Continuous Random Variables Flaherty, 17

3.2 Continuous Random Variables

1) Continuous Uniform: The random variable is a real number between a and b. For
example, the random variable could be a number between 0 and 1.

Notation and Parameter(s): X ~ U(a,b) Support: = € [a, b]
1 a1 0, r<a
- € |a
PDF: f(z) = ¢’ ’ CDF: F(z) = { &2, z € [a,b]
0, x ¢ [a,b
1, x>0b
Uniform Probability Density Function (a=0,b=1) Uniform Cumulative Distribution Function (a=0, b=1)
] Zz
o | 5 @
> (=] g 1
S . £
g 21 % 3
h g . .
o | 3 . P(X<0.75)=0.75
< T T T T S T T T T T T
04 0.6 0.8 1.0 0.0 02 04 06 0.8 1.0
Random Variable Random Variable
Figure 3.22: Uniform PDF Example Figure 3.23: Uniform CDF Example
Ef#F##Continuous Uniform Distribution##iis
FEfParameters###
a=0 ; b=1 #the range#

FHHEPMF Y
x=seq(from=a, to=b, by=.01) ; y=dunif(x) ; pdf=data.frame(x,y)
plot(pdf, type="1",
x1im=c(min(x) ,max(x)), ylim=c(0, max(y)),
Twd=2, col="black", ylab="Probability", xlab="Random variable",
main=bquote("Uniform Probability Density Function (" *

a=.(a) * "," ~ b==.(b) *")"))

BEHCDFH#E#
x=seq(from=a, to=bh, by=.01); y=punifi(x); cdf=data.frame(x,y)
plot{cdf, type="1",
xlTim=c(min(x) ,max(x)), ylim=c(0,1),
ylab="Cumulative Probability", xlab="Random variable",
main=bquote("Uniform Cumulative Distribution Function (" *

a—.(a) = "," ~ b=.(b) *")"))

###simulations And Questions#ff

val=0.3 ; myquart=0.75 #example values#
mysim=runif (100, min=a, max=h) #100 random simulations from uniform#
punif(0.3, min=a, max=h) #probability less than 0.3#

x1=min(which(pdfix >= min(x))); x2=max(which(pdfix < wal))
with(pdf, polygon(x=c(x[c(x1,x1:x2,x2)1), y= c(0, y[x1:x2], 0), col="red"))

g=qunif(myquart, min=a, max=h) #the 3rd quartile#
with(cdf, ablineCh=myquart , Tty=2, col="blue"))

with(cdf, abline(v=q , Tty=2, col="blue"))
mtext(paste0("P(X<", round(q,2), ")=", myquart), side=1, Tine=-2)

Figure 3.24: Continuous Uniform R Script
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3.2 Continuous Random Variables Flaherty, 18

2) Exponential Distribution: The random variable is the lifetime of a memory-less object
(i.e. the probability the objects last ¢ years after already lasting s years is the same as the
probability the object lasts ¢ years after already lasting s+ 1 years). For example, the random
variable could be the length of time a computer lasts.

Notation and Parameter(s): X ~ Exp(\) Support: z € Ry
e M x>0 l—e™ >0
PDF: f(z) = = CDF: F(z) = =
0, x <0 0, x <0
Exponential Probability Density Function (1 =0.5) Exponential Cumulative Distribution Function (.. =0.5)
. - r
3 R
g !
3 — i b
3 o T
g8 kR
7 E 7 P(X<1.39)=0.5
) 0 o
S T T T ° T T T T
0 5 10 15 0 5 10 15
Random Variable Random Variable

Figure 3.25: Exponential PDF Example Figure 3.26: Exponential CDF Example

gifft#Exponential Distribution###ss#

#H#Parameters###

mylambda=0.5 #~n*p in binom#

FHHEPMFH##H

x=seq(from=0, to=15, by=.01) ; y=dexp(x, mylambda) ; pdf=data.frame(x,y)
plot(pdf, type="1",

x1im=c(min () ,max(x)), ylim=c(0, max(y)),

Twd=2, col="black", ylab="Probability", xlab="Random variable",

main=bquote("Exponential Probability Density Function (" *
Tambda==. (myTlambda)=")"))

HEECDR###
x=seq(from=0, to=15, by=.01); y=pexp(x, mylambda); cdf=data.frame(x,y)
plot(cdf, type="1",
xlim=c(min(x),max(x)), ylim=c(0,1),
ylab="Cumulative Probability", xlab="Random variable",
main=bquote("Exponential Cumulative Distribution Function (" *
Tambda==. (mylambda) =")"))

###Simulations And Questions###

val=5 ; myquart=.5 #example values#
mysim=rexp (100, mylambda) #100 random simulations from exponential#
1-pexp(val, mylambhda) #probability greater than value#

x1=min(which(pdfix >= val)); x2=max(which(pdfix < max(x)))
with(pdf, polygon(x=c(x[c(x1,x1:x2,x2)]), yv= c(0, y[x1:x2], 0), col="red"))

g=gexp(myquart, mylambda) #the median#
with(cdf, ablineCh=myquart , Tty=2, col="blue™))

with(cdf, abline(v=q , lty=2, col="blue"))
mtext(pasted("P(X<", round(q,2), ")=", myquart), side=1, Tine=-2)

Figure 3.27: Exponential R Script
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3.2 Continuous Random Variables Flaherty, 19

3) Gamma Distribution: The random variable could be the time left until death of a

person.
Notation and Parameter(s): X ~ Gamma(a, \) Support: t € [a, b]
. A qa—1_-Xt
PDF: g(t) = 2552 e
Gamma Probability Density Function (c. = 0.5, B = 0.25) Gamma Cumulative Distribution Function (o.=0.5, B = 0.25)
3 z
> o g e
g ° &
© o
8 S & I e
&N 8 |
° £ 7 P(X<0.41)=0.35
o _| o o _|
e T T T T T ° T T T T
0 1 2 3 4 5 0 5 10 15
Random Variable Random Variable
Figure 3.28: Gamma PDF Example Figure 3.29: Gamma CDF Example
##fH##Ganma Distributionf#fis
#H#EParameters###
shape=0.5; scale=0.25

FHEPVMFESH
x=seq(from=0.1, to=5, by=.01) ; y=dgamma(x, shape, scale) ; pdf=data.frame(x,y)
plot(pdf, type="1",
x1im=c(min(x) ,max(x)), ylim=c(0, max(y)),
Twd=2, col="black", ylab="Probability", xlab="Random variable",
main=bquote("Gamma Probability Density Function (" *
alpha==. (shape) *"," ~ beta==.(scale) = ")"))

FHECDF###
x=seq(from=0.1, to=15, by=.01); y=pgamma(x, shape, scale); cdf=data.frame(x,y)
plot(cdf, type="1",

x1im=c(min(x) ,max(x)), ylim=c(0,1),

ylab="Cumulative Probability”, xlab="Random variahle",

main=bquote("Gamma Cumulative Distribution Function (" *

alpha==. (shape) *"," ~ beta==.(scale) = ")"))
##simulations And Questions###
val=0.5 ; myquart=.35 #example values#
mysim=rgamma(100, shape, scale) #100 random simulations from gamma#

pgamma(val, shape, scale) #probability less than value#

x1=min(which(pdfix >= min(x))); x2=max(which(pdfix < val))
with(pdf, polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0), col="red"))

g=ggamma(myquart, shape, scale) #the 35th quantile#
with(cdf, ablineCh=myquart , Tty=2, col="blue"))

with(cdf, abline(v=q , Tty=2, col="blue"))
mtext(paste0("P(X<", round(qg,2), ")=", myquart), side=1, Tine=-2)

Figure 3.30: Gamma R Script
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3.2 Continuous Random Variables Flaherty, 20

4) Beta Distribution: The random variable is essentially a distribution on probability
itself. For example, the random variable could be the probability that the probability someone
watches an add is over 50%.

Probability

Notation and Parameter(s): X ~ Beta(a,b) Support: z € [0, 1]
. _ Tla+d) a—1(1 _ .\b—1
PDF: f(x) = NONOK (1—x)
Beta Probability Density Function (o =0.25, p=0.35) Beta Cumulative Distribution Function (o= 0.25, p = 0.35)
s
:
JJ E
§ ° ‘ P(X<0.3)=0.5
T T T T T T S T T T T T T
0.0 0.2 04 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Random Variable Random Variable
Figure 3.31: Beta PDF Example Figure 3.32: Beta CDF Example
#####4Beta Distribution###ss
#f#Parameters#is
shape=0.25; scale=0.35

EPMF#£#
seq(from=0.01, to=.99, by=.01) ; y=dbeta(x, shape, scale) ; pdf=data.frame(x,y)
ot(pdf, type="1",
xTim=c(min () ,max(x)), ylim=c(0, max(y)),
Twd=2, col="black", ylab="Probability", xlab="Random variable",
main=bquote("Beta Probability Density Function (" *
alpha==. (shape) *"," ~ beta==.(scale) * ")"))

##
X=
]

p

BHEFCDF#EE
x=seq(from=0.01, to=.99, by=.01); y=pbeta(x, shape, scale); cdf=data.frame(x,y)
plot(cdf, type="1",

xTim=c(min(x),max(x)), ylim=c(0,1),

ylab="Cumulative Probability”, xlab="Random variahle",

main=bquote("Beta Cumulative Distribution Function (" *

alpha==. (shape) *"," ~ beta==.(scale) * ")"))
###Simulations And Questions###
val=0.25 ; myquart=.5 #example values#
mysim=rbeta (100, shape, scale) #100 random simulations from beta#
pbeta(val, shape, scale) #probability less than value#

x1l=min(which(pdfix >= min(x))); x2=max(which(pdfix < val))
with(pdf, polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0), col="red"))

g=gbeta(myquart, shape, scale) #the median#
with(cdf, ablineCh=myquart , lty=2, col="blue"))

with(cdf, abline(v=q , Tty=2, col="blue"))
mtext(paste0("P(X<", round(q,2), ")=", myquart), side=1, line=-2)

Figure 3.33: Beta R Script

20



3.2 Continuous Random Variables Flaherty, 21

5) Normal Distribution: The random variable could be the height of a person.

Notation and Parameter(s): X ~ N(u, o?) Support: z € R
2
: — 1 _3(%5)
PDF: f(x) = pore
Normal Probability Density Function (u=0, o’ = 1) Normal Cumulative Distribution Function (u=0, &= 1)
s : 1 —
> S g S |
5 o g
8 o 2 o
& - 5 ° |
5 e - oss |
o | 3 o | P(X<1.04)=0.85 i
° T T T T T © T T T T T
-4 2 0 2 4 -4 2 0 2 4
Random Variable Random Variable
Figure 3.34: Normal PDF Example Figure 3.35: Normal CDF Example

gif#dNormal Distribution###ss
FH#Parameters###
mymean=0; mywvar=1

HEHPMF###
x=seq(from=-4, to=4, by=.01) ; y=dnorm(x, mymean, myvar) ; pdf=data.frame(x,y)
plot(pdf, type="1",

xTim=c(min(x) ,max(x)), ylim=c(0, max(y)),
Twd=2, col="black", ylab="Probahility", xlab="Random Variable",
main=bquote("Normal Probability Density Function (" =

FRTIN T

mu==. (mymean) o~ sigman2==. (myvar) = ")"))
FHHFCDF###
x=seq(from=-4, to=4, by=.01) ; y=pnorm(x, mymean, myvar); cdf=data.frame(x,y)
plot(cdf, type="1",
x1im=c(min(x) ,max(x)), ylim=c(0,1),
ylab="Cumulative Probability", xlab="Random variabhle",
main=bquote("Normal Cumulative Distribution Function (" *

PR

mu==. (mymean) o~ sigman2==. (myvar) * ")"))

###simulations And Questions###

val=2 ; myquart=.85 #example values#
mysim=rnorm(100, mymean, myvar) #100 random simulations from normal#
1-pnorm(val, mymean, myvar) #probability greater than value#

x1=min(which(pdfix >= val)); x2=max(which(pdfix < max(x)))
with(pdf, polygon(x=c(x[c(x1l,x1:x2,x2)1), y= c(0, y[x1:x2], 0), col="red"))

g=gnorm(myquart, mymean, myvar) #the 85th quantile#
with(cdf, abline(h=myquart , Tty=2, col="blue"))

with(cdf, abline(v=q , Tty=2, col="blue"))
mtext(paste0("P(X<", round(qg,2), ")=", myquart), side=1, line=-2)

Figure 3.36: Normal R Script
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Flaherty, 22

4 Transformations And Approximations

It may be the case that one knows a random variable X, but wants to study values of
interest related to X. For example, if one knows the distribution for the amount of people
who enter a store every hour, they may be interested in understanding the revenue the store
gets every hour, which they believe to be a function of X. In general, methods for finding
distributions of transformations can be time-consuming, so if only certain properties of the
transformation are of interest (such as mean and variance), it may be worthwhile to estimate
these values instead.

4.1 Theorems And Further Examples

Theorem 4.1. CDF Method: Given a random variable X and a transformation Y = g(X),
we can calculate the CDF of Y as Fy(y) = P(Y <y) = P(g(X) <y)=P(X < gl (y)) =

Fx(97'(y)).

Theorem 4.2. MGF Method: Given a random variable X and a transformation ¥ =
9(X), we can calculate the MGF of Y as My(y) = E (") = E (™)), and then use
properties of exponents and expectations to break apart the expected value into (hopefully)
the form of some known MGF.

Theorem 4.3. Jacobian Method: Given a continuous random variable X and a differen-
tiable, monotonically increasing transformation ¥ = ¢g(X), we can calculate the PDF of YV’

as fr(y) = f (97'(v)) )d%g‘l(y)‘-

Theorem 4.4. Probability Integral Transform: Given a continuous random variable X,
the transformation Y = Fix(X) yields a standard U(0, 1) distribution.

Proof. Fy(y) = P(Y <y) = P(Fx(X) <y) = P(X < Fx'(y)) = Fx(F5'(y)) =y |

Theorem 4.5. Generate Random Variables: Given a continuous random variable X
and a source for psuedo-random numbers from a standard uniform distribution U, we can
generate random values from the distribution X by computing Y = F'(U) and realizing
that the CDF of YV is F.

Proof. Fy(y) = P(Y <y) = P(Fx'(U) <y) = P(U < Fx(y)) = Fu(Fx(y)) = Fx(y) W

Theorem 4.6. Propagation of Error: Given a random variable X with known mean and

variance, and given the transformation Y'=¢(X), we can get 1°* order approximations for the
mean and variance of Y with the formula E(Y)~g (E(X)) and V(Y) ~ V(X) [¢' (E(X))]*. We
can get improved 2™ order approximations with the formula E(Y) ~ ¢ (E(X))+iV(X)g" (E(X)).

Proof. Use Taylor Expansion about E(X), group terms, and then apply properties of expec-
tations on linear functions (e.g. Y=aX+b = E(Y)=aE(X )+, see Theorems 2.1 and 2.2).

9(X)= i 800) (X i) = g(X) & g(ix)+9 (x) (X —pox)= g ()] X+[g(x)—¢ (1x)pix]
[ |
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4.2  Problems Flaherty, 23

4.2 Problems
4.30) Find E[1/(X 4 1)] where X is a Poisson random variable.

The probability mass function of a Poisson random variable X is p(k) = Akljr ~. Using

o0
Taylor’s Series for e”, we know e* = > %T and so calculate the expected value of X as
n=0

> MNee=A > ANE—Te—A A 0 EMF—1 N > )\(k—l) oy
E(X)=) k- o =Y k=AY = de ;:%—1MZM e =\
=1

k=0 ’ k=1 ’ k=1

Then as a function of the random variable, the expected value is calculated as

1 e 1 )\ke—)\ o0 )\k o )\k+1 e—)\
El— ) = - = T M= EAN——
(X+1) 2 1w E:@wqﬂe ;%%+1NA

k=0 k=0 _
oA L \kH o\ (i )\y)
- I~ N )
A = (k+1) A =
e A )\ e A 1—e?
) +;¢> v (1ted) )

2.56) If X ~ N(0,0?), find the density of Y = | X|

The Cumulative Distribution Function (CDF) of Y is Fy(y) = P(Y <vy) = P(|X| <y).
By the properties of absolute value, this is P(—y < X <y) = P(X < y) — P(X < —y).

Each term is in the form of a CDF for X, so we can write Fy(y) = Fx(y) — Fx(—y).

Recall fy(y) = diny(y) and that the Probability Density Function (PDF) of a normal

1 e—p\2
distribution with mean p and standard deviation o is fx(z) = #ﬁe%( ). So we have:

fr () :diy<FX(y) — Fx(-y)) substituting from above
= fx(y) (diyy — fx(~y) (%—y) chain rule
= [x(y) + fx(=y) simplifying
= . 127r621(g)2 + . 127Te21(_0y)2 X is normal with mean 0
- ez () ye [0, 00) and zero otherwise
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4.2  Problems Flaherty, 24

2.66) Let fx(z) = ax~ @tV for z > 1 and fx(x) = 0 otherwise, where a is a
positive parameter. Show how to generate random variables from this density
from a uniform random number generator.

We first find the CDF of the distribution:

X X = 1
Fy(z) = P(X < 2) :/ Fe()dt :/ ot @ gp = g f =1
—50 1 T
We next calculate the inverse:
[F() . 1}: ) 1 ) (1)1/a
z)=1—— r=1—-——— T) =
X xe (F‘l(;z;)) X 1—=z

Finally, we take samples u; from a continuous uniform distribution U ~ U(0,1) and
subsequently evaluate F' )}1 at each sample point. The resultant values F gl(ui) are random
variables from the density fyx. For example:

PDF f(x) = ax™™" Histogram of RV
_ g
S 8
£ g
g < | 2 |
& °© £
o | o = = =
e T T T T T T f T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100
Continous Random Variable Generated Random Variables
Figure 4.1: PDF Figure 4.2: Generated Random Variables
a=1 #example parameter#
n=100 #sample size#
pdf=function(x,y) {y*(xr(-y-1))} #pdf given#
pdfx=seq(from=1, to=n)
pdfy=pdf(pdfx,a)
plot{pdfx, pdfy, type="1",
x1im=c(0,max(pdfx)), ylim=c(min(pdfy), max(pdfy)),
xlab="Continous Random Variable", ylab="Probability",
main=expression(plain("PDF ") *f(x)==alpha * x~(-alpha-1)))
set.seed(501) #so0 can precisely replicate#
u=runif(n=100, min=0, max=1) #n random samples from (0,1) uniform dist#

f.oinv=function(x,y) {((1)/(1-x))A(1/y)} #inverse of cdf#
invy=f.inv(u,a)
hist(invy, xTim=c(0,max(pdfx)), breaks=100,
xlab="Generated Random Variables",
main="Histogram of RV")

Figure 4.3: R Script
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4.2  Problems Flaherty, 25

4.100) If X is a uniform on [10,20], find the approximate and exact mean and
variance of Y = 1/X and compare them.

Given the 15 and 279 central moments of a distribution X, call them ux and 0%, we are
interested in the mean and variance of a transformation Y = ¢g(X). When the transformation
is linear, i.e. can be written Y = a X +0b for some real a, b, then by properties of expectations:

py =E(Y)=E(aX +0b) =aE(X)+b=apx +0b (4.1)
oy =V(Y) =V(aX +b) = a®V(X) = a’0% (4.2)

The Taylor Series approximation for a generic transformation g about the mean py is
given by ¢g(X) = Z g(n) “X) (X — px)™. This gives a linear approximation for Y = g(x). Up

to the first order, the approximation is:

9(X) = g(px) + g (nx)(X — px) = [¢' (px)] X + [9(px) — ¢’ (px) px]

Then from equation 4.1 and Equation 4.2 above:

py = g (ux)E(X) + [g(px) — 9" (px)ix] = ¢ (px)px + g9(ux) — g’ (px)px = g(px)

Oy ~ [QI(MX)]Q Ugc

Proceeding with our approximation, we first calculate the mean and variance of X.

E(X) = %(20 +10) = 15

V(X) = B(X?) — (E(X))? = ( /1 R dx> T

. U010
1 3 20% — 10° 7000 — 6750 25
— (= T ) o= T g5 DD 2
10 3 30 30 3
So our approximations are py ~ ;%x =+ and 0} & (%)2%5 =25 =L

To get the exact values, we use the CDF method to find the distribution and calculate
moments.

1
Fy(y)=PY <y) = P(y < y) y positive since x positive
1 1 1
—p X2—>:1—P<X§—):1—FX<—> The CDF
Yy Yy Y
d 1 1 1 1 1
_ YR ) = — <>._:_ <_>:— The PDF
o) = o (B = ~£x(5) - = = 5 (5) = =1 :
] 1 [T1 1 )
E(Y) = /oo y10y2 dy = 0 /210 Edy =15 [ln(y) — ln(y)|.05} =0 Exact mean
| In(2 1 1 In(2)? 1-—2In(2)?
V(YY) = ( v ) - no) =700 200 ) = n(2) Exact Variance
1/20 1092 100 100 200 100 200
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4.2  Problems Flaherty, 26

1) Let Y have PDF fy(y,0) = %yl/"_l for 0 < y < 1 and 6 > 0. Establish the
distribution of X = —In(Y).

It is clear that f is a continuous random variable. Just as clearly, the negative natural
log transformation g(y) = — In(y) is differentiable and monotonically decreasing on R, \{0}
(and so on the support of y). These conditions fulfill the criterion for the Jacobian Method,
and so the distribution of X is given by fx(z) = fy (¢7'(2)) | L9~ (z)].

The inverse is calculated as g(z) = —In(z) = x = —In(¢g7'(z)) = g '(z) =¢e*
and so the derivative of the inverse is —e™*.

Plugging these calculations into the above formula, we have fx(z) = fy(e™*)-e~*. Finally

1_
we see fy(x) = %e_” Lot = %'6_(%)I. This is the exponential distribution with parameter

A= %; X ~ Exp(%). Since the support of Y is (0, 1), and since the natural log of y goes to
—oo as y approaches 0 from the right, the support of X is (0, 00).
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5 Joint Distributions

5.1 Definitions

Definition 5.1. Joint Distributions: Often, one is interested in studying random variables
which have the same probability space. For example, one may be interested in random
variables for adult height, and the average of the adult’s parent’s height. In general, the
properties and rules for the multivariate case are largely identical to the univariate case.
For example, the joint density function [~ [* fyy(z,y)dzdy integrates to one and
the joint CDF is Fxy(z,y) = P(X < z,Y < y). One should take care to interpret
these probabilities correctly in order to get the right surface to integrate over. For example,
Pry < X <29,y1 Y <p) = F(x2,92) — F(22, 1) — F(21,92) + F(z1,91). All properties
are identical for the discrete class just replacing integration with summation

Definition 5.2. Marginal Distributions: Given a joint distribution, it may be of in-
terest to break the distribution into the univariate distributions. For example, fx(z) =
ffooo fxv(z,y)dy. Note that in contrast, one can not generally construct the joint distribu-
tion from marginal distributions. This definition becomes more clear in the discrete case.
The marginal distribution is the “margin” after summing the X random variable along each
Y variable.

Definition 5.3. Conditional Distributions: In addition to breaking the joint distribu-
tion into univariate distributions, one may be interested in studying the distribution of one
variable conditional on another. For example fx)y(z|y) = I Xg((;)’y). Again this definition
becomes more clear in the discrete case. We condition on the y desired, then divide each

entry along the x cases by the total y case at the given y.

Definition 5.4. Conditional Expectations: As would be expected, E(Y | X) = ffoooy
frix(ylz) dy.

Definition 5.5. Covariance: A measure of joint variability; the multivariate analog to vari-
ance in the univariate case. Cov(X,Y)=E[(X —E(X)) (Y —E(Y))] =E(XY)-E(X)E(Y).

Definition 5.6. Correlation (p): A dimensionless measure of association between —1 and
_ Cov(X)Y)

L opxy = Aooven

Definition 5.7. Independent And Identically Distributed (iid): Random Variables
are said to be independent and identically distributed if the random variables are both
independent and share the same distribution. For example, sampling without replacement
is an identically distributed process but clearly not an independent one. However sampling
with replacement is an iid process.

Definition 5.8. Order Statistics: We may be interested in the order of a collection of
random variables. For example, if X; are all iid random variables, an question of interest
might be the distribution of the minimum of the X;’s. Finding minimums/maximums (or
related “orders”) comes down to following similar arguments as this: if U is a minimum,
then the CDF of U is P(U < u), and since U is the minimum, U < u — u < X;. Then
the CDF can be written as the product of CDFs for the iid random variables. In general,

the K™ order statistic, denoted Xx) is fx(z) = W&l_k),f(:c)]?k_l(x) [1— F(x)]" "
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5.2 Theorems And Further Examples Flaherty, 28

5.2 Theorems And Further Examples

Theorem 5.1. Properties of Independence: If X and Y are independent, then the joint
PDFs factor into the marginal PDFs; fxy = fx(x)fy(y). As a consequence, the joint CDFs
must also factor into the marginal CDFs, the joint MGFs must factor into the marginal
MGFs, and E(XY) = E(X)E(Y).

Theorem 5.2. Independence Implies Zero Covariance: If two random variables are
independent, then they have zero covariance (and therefore zero correlation). The converse
of this statement is untrue; random variables with zero covariance are not necessarily inde-
pendent.

Proof. Let X and Y be independent. We are interested in computing Cov(X,Y) = E(XY) —
E(X)E(Y). From Theorem 5.1, E(XY) = E(X)E(Y), so this is immediately seen to be
zero. |

Theorem 5.3. Covariance Of Linear Transformations: If U = a+ > b,X; and V =
i=1

c+>_ d;Y;, then Cov(U, V) = Z Z ;d;Cov(X;,Y;). In particular, since Cov(X, X) = V(X),
J=1 Lj=1

V(X+Y)=V(X)+V(Y )—|—2COV( Y) and V(aX,bY) = a®*V(X) +*V(Y) +2abCov(X,Y)
Corollary 5.3.1. If each X7, X5, ..., X, is independent, then V (Z Xi> = > V(X;)
i=1 i=1

Theorem 5.4. Law of Iterated/Total Expectations: The expected value of Y can be
found by summing or integrating the conditional expectations; E(Y) = E[E(Y | X)]. The
variance can be found with V(Y) = V(E(Y | X)) + E(V(Y | X))
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5.3 Problems Flaherty, 29

5.3 Problems

3.8) Let X and Y have the joint density f(xz,y) = g(m +y)? for 0 < x,y < 1.
By integrating over appropriate regions, find P(X > Y), P(X +Y < 1), and
P(X < ). Next find the marginal densities of X and Y as well as the two
conditional densities.

We explain the first bounds (the case P(X > Y')) and follow the same procedure for the
other two cases. The support of the joint density is over the region (0,1) x (0,1). Choosing
to integrate over y first, the bound is minimally 0 and maximally the line y = z (this is the
condition that X > Y'). After integrating over y, we can integrate over x where values can
range from 0 to 1. So our double integral is fol Jy f(z,y)dy dz.

P(X>Y) //f:xydyd:z:— //x+2$y+y dy dx

——/ iy + xy? + ’ dr = 6/Zxdx—67 x41 _1
—7) 7Y v y —7) 3 734" o] T 2
1 11—z 6 1 11—z
P(X—l—YSl):/ / f(x,y)dydx:?/ / o? + 2wy + y dy dw

o Jo o Jo

6 ('], , 1 gl 6 (1 2°
== = dr=- [ =—=d
7/0{xy+a:y+3yo T 7/03 335
6fz _a'f] _6(1y_6 _3
713 12l T7\4) 28 14

P(X <1/2)= / /f:vydydac— / /a: + 2zy + y* dy dx
1/2 1

- = dx = d

7/0 [ 3 } T = 7/0 7 —l—x—|—3 x

6 x3+x2+x‘1/2 6 1+1+1 68 6 2
713 2 3l | 7T\24 8 6) 724 21 7

To get the marginal densities, we integrate the joint density over the opposite variable.

o0 1
Fete) = [ vy = [ 2asnry
3

6 [ 6
:—/ x2+2xy+y2dy:—x2y+xy2+y—
7 Jo 7 3

1 _S 562—|r:1:'—|—1
ol 7 3
1

61
2 G 2
J=3laroer)

00 1
fY(-T7y):/_ fX,Y(xay)diU:/O g(x+y)2dx

6 [ 6 [®
:?/0 x2+2xy+y2d:v:?[%+x2y+xy
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5.3 Problems Flaherty, 30

Finally, conditional densities are calculated as the joint density divided by the marginal
density. So:

f (x|y) _ fX,Y(x7y) _ g($+y)2 o $2+2$y+y2
XY - - -
| fy () SE+y+y?) sty+y?

frxyz)  S(+y)? 2?4 2ay -+

Frix(yle) = fx() :$($2+x—|—%)_ 2 +r+ 3

3.14) Suppose that fxy(x,y) = ze 2@+ for £,y € R,. Find the marginal and
conditional densities of X and Y. Are X and Y independent?

Since z and y are both positive, so too is fxy(x,y). Then the marginal density of X is

fx(@,y) = Fi(z,y) = [72 fxy(@,y)dy = [[° fxy(z,y) dy (the marginal density of Y is in
the same format). We calculate the integrals below (note the the marginal density of X is
an exponential distribution with A = 1):

o0 oo —1
fx(z,y) = / fxy(z,y)dy = / xe ™ dy u=—zy—x,du=—xdy,dy = —du
0 0 r

a a

lim ze'— du = — lim e'du = — lim [e_xy_x|g] = — lim [e“”‘x — e_z] =e*
a—o0 [ T a—oo fq a—+00 a—00
RN —1
fy(x,y):/ xe T dx u=—xy —x,du=—ydr —dr,dr = du
0 y+1
: ¢ u : ¢ u : —zy—x |2 : —az—z -z 1
lim xe du = — lim edu:—hm[e Y H:—hm[e —e }:—2
a—oo [ Y+ a—oo J a—00 0 a—00 (y —+ 1)

Like above, we calculate the conditional densities by dividing the joint density by the
marginal density and recalling exponent rules.

fxy(z,y) ze~ WD)

Ixpy (zly) = i ’) — . :I<y+1)2e—z(y+1)
v wr?
_ fyx(x)  werrh

The marginal densities don’t multiply to the joint density, so we know X and Y are not
independent.
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5.3 Problems Flaherty, 31

2) Suppose that you roll two fair six-sided dice. Let Y; be the number of ones
and Y> be the number of twos. What is the join distribution of Y; and Y>? What
is the conditional distribution of Y; given Y; = 07

The joint distribution is given below. The argument is just based on counting. There are
62 = 36 possible outcomes of the roll. The number of ways that (say) there is exactly one
1 rolled and zero 2’s rolled is the six possibilities for rolling 1 on the first go, less two for
ensuring neither a 2 nor a 1 comes up on the second roll, plus four ways a 1 is rolled on the
second roll without a 1 or 2 being rolled on the first roll; a total of eight possibilities.

Y 1

0 1 2
ol 16/36 8/36  1/36 i25/36
Y2 1] 8/36 2/36 0 110/36
2l 36 0 0 iy
25/36 10/36 1/36 | 1

The conditional distribution of Y5 given Y; = 0 is the joint probabilities from the table

4
3 =0 Y2=0
£ 236
above divided by the marginal probability that Y1 = 0; fayvi—oy(32) = 3 % %%
25 — 36250 Y2 =
0, else

4.57) If X and Y are independent random variables, find V(XY) in terms of the
means and variance of X and Y.

V(XY) = E(X?*Y?) —E(XY)?
= E(X*Y?) — [E(XY)E(XY)]
= E(X?E(Y?) — [E(X)E(Y)E(X)E(Y)] By independence
=E(X*)E(Y?) — [E(X)*E(Y)?]
= [V(X)+E(X)?] [V(Y) +E(Y)?] — [E(X)*E(Y)?] Substitute for variance
= V(X)V(Y) + V(X)E(Y)? + VY)E(X)? + E(X)’E(Y)? — [E(X)*E(Y)?]
= V(X)V(Y) + V(X)E(Y)? + V(Y)E(X)?
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5.3 Problems Flaherty, 32

3.66) Each component of a system with three lines and two widgets has an in-
dependent exponentially distributed lifetime with parameter A (i.e., the system
works if at least one of the three lines has both widgets working). Find the cdf
and the density of the system’s lifetime.

We approach this in two parts. First, we find the distribution of the lifetime of one line
in the system. The lifetime of a line is equivalent to the minimum lifetime of two widgets
(minimum since a line fails if one widget fails). Next, we find the distribution for the lifetime
of the system given the lifetime of a line. The lifetime of the system is equivalent to the
maximum of the three lines (maximum since the system only fails when all three lines fail).

First we address the lifetime of one line. Let V' be a random variable denoting the
minimum lifetime of two widgets, label them X; and X,. By definition, the CDF of V is
Fy(v) = P(V < w) or equivalently Fy,(v) =1 — P(V > v). Note that V > v if and only if
X1, X5 > v,50 Fy(v) =1-[P(X; > v)P(X; > v)] = 1-[(1 — P(X; <v))(1 - P(X; <v))].
Both X; and X, have the same distribution, so this can be re-written Fy,(v) = 1—[1 — Fx(v)]?

Next we address the lifetime of the system. Let U be a random variable denoting the
maximum lifetime of three lines, label them Vi, V5, V5. By definition, the CDF of U is
Fy(u) = P(U < u) We use the same argument as above that U < w if and only if Vi, V5, V3 <
u. So Fy(u) = P(Vi < u)P(Va < u)P(Vy < u) and since each of Vi, Vs, Vs follow the same
distribution, Fyy(u) = [P(V < )]’ = [Fy (u)]?

Since each widget X; ~ Exp()\), the CDF for any one widget is Fy(z) = 1 — e .
Plugging this into the above derivation, we can calculate the CDF of the entire system:

Fy(u) = Fy(u)* = [1 = [1 = Fx(u)]*]”

= [1 ~[1-(1- e—m)ﬂ3 - [1 - [e—mﬂg
- [1 - 672[\"]3 =1—3e v 4 3(67”\“)2 — ((2’2’\“)3
=1 — 36_2>\u + 36—4>\u _ 6—6>\u

And then go on to calculate the density:

_ d —2\u —4Au —6A\u —2A\u —2 -3
f = —(F — _ — _
U(U) U ( U(U)) O6Ae 12)Xe + 6Ae = b6)e (1 2e +e )
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5.3 Problems Flaherty, 33

3.68) Suppose that a queue has n servers and that the length of time to complete
a job is an exponential random variable. If a job is at the top of the queue and will
be handled by the next available server, what is the distribution of the waiting
time until service? What is the distribution of the waiting time until service of
the next job in the queue?

Call the independent and identically distributed random variables for the time needed
to complete the job Xi,..., X, ~ Exp(\). The waiting time until service is given by the
minimum of these values, call it V. If V' is the minimum, then V' > v only when X1,..., X, >
v. Using the same process as the question above, the distribution for V' is given by f,(v)
nfx(v)(1- Fx<v))n_l =n(Ae ) [1-(1- e"\w)}n_l =n(Ae ") [6_’\9”]”_1 = ne ", So
the wait time until service follows a Exp(An) distribution.

The distribution of the wait time until service of the next job is related to the second
shortest time one of the n servers finishes their existing job. So we want the 2" order statistic
(2 — 1 = 1 samples are smaller, n — 1 samples are larger). A counting argument gives this
distribution as:

@) = i @ @) [ = P
Fro () = gy @) Fla) [ = Pl

o (@) = (02 =n)Ae ) (1 — ) [1— (1 — )]
fX(z) (ZL’) = (n2 - n)()‘emj(l_n))(l - 6_/\1)

fxp (@) = (n? — n)(Ae 1) _ \eAam)

[xp (@) = (n? — n)Ae " (M — 1)
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4.72) An item is present in a list of n items with probability p; if it is present,
its position in the list is uniformly distributed. A computer program searches
through the list sequentially. Find the expected number of items searched
through before the program terminates.

Label the list 1,...,n. The probability the program terminates on the 1% item from the
list is the probability that both the item is in the list (p) and the position in the list is the
15% (since uniform, %), a total probability of 2. This argument repeats for through the first
n — 1 items in the list. The program terminates after n items if either the item is both in
the list and in the last position (£) or if it is not in the list (1 — p), a total probability of
P+ (1—-p).

So the expected value is:

S o (2 +0-n)] =32 )

n®+n n+ 2n — 2n
:Q( )+n—np:p p+ P

n 2 2 2
2n+p—np
2
4.89) Let X4, X5,..., X, be independent normal random variables with means p;
n
and variances a’f. Show that Y = )  «a;X;, where the «; are scalars, is normally
1=1

distributed, and find its mean and variance using moment generating functions.

Recall the moment generating function of a normal distribution X with mean p and
1
variance o2 is Mx (t) = e**2°""" Then we calculate Y as follows:

My (t) = E(e™) = I[-E‘;<etiZzl aiXi) =E(e'*)E(e"***2) .- -E(e"**") By independence

= ]\4}(1 (tOAl)MX2 (tOéQ) cee Mxn (tOén)

_ [em<ta1>+2al<ta1> ] [emtaméo%(taz)?} [emmméo%aan)Q]

B ] (S 3o
=1 i=1
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5.3 Problems Flaherty, 35

1) Let Y; ~ Gamma(a, A). Find the exact distribution of Y, then use the delta
method to approximate the mean and variance of g(Y) = In(Y).

The moment generating function for a gamma distribution x with parameters o and A
is Mx(t) = (ﬁ) for t < o. Then we calculate the exact distribution of ¥ following the
A

same process as above:

% by X; t t t
M, =E(e?) = E(e" & ) =E(en")E(en?) .- -E(en'™) By independence
t t t tN]" . . o
= My, (—) My, (—) <o My, (—) = |:My (—)} Since distributions are identical
n n n n

1 an 1 no X
= [( . ) ] = ( ; ) = Y ~ Gamma(na, n\)
A n

The delta method is used to find approximate values of interest for transformed distri-
butions. Since for linear transformations ¥ = aX + b we have E(Y) = aE(X) + b and
V(Y) = a®V(X), we can use the first order Taylor Series approximation about a generic
transformation g(X) to give a linear approximation for the mean and variance of the trans-

formation. See g(X) = > £ (X — ux)" s0 g(X) ~ ¢ (1x)X + (9(pux) — ¢ (jx)pix) and
n=0

then E(g(X)) ~ g(px) and V(g(X)) ~ [¢/(1ux) > V(X).

The expected value of a generic gamma distribution is «/A and the variance is a/A\?.
From the above, we know the parameters for Y are na and n\ respectively. So the approx-

~

imate mean and variance of In(Y") is calculated as E(In(X)) ~ In(na/n)) = In(a/\) and
V(X)) ~ 9G] zap = [2]7 5% = e
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6 Limit Theory

6.1 Definitions

Definition 6.1. Random Sample (RS): Y7, Y5,...,Y, are a random sample if they are
independent and identically distributed.

Definition 6.2. Statistic: Functions of a random sample that don’t involve unknown pa-
. n

rameters. Popular statistics include the sample mean, Y, = %Z Y;, unbiased sample

i=1

n N\ 2
i 2 __ 1 -
variance, 5% = — § 1 (Y; y)
1=

Definition 6.3. Sample Distribution: The distribution of a statistic.

Definition 6.4. Asymptotic Inference: In contrast to exact inference, which is true for
any size n, asymptotic inference uses large-samples to approximate distributions.

Definition 6.5. Convergence: Since random variables aren’t deterministic, we can’t use
normal calculus definitions for convergence. Instead, we use three major types of convergence.
The strongest type of convergence is “almost surely” (that is, with probability 1). This
type of convergence is sufficient to show convergence in probability. We say a sequence of
random variables Y; converges in probability to a random variable Y, and denote it Y; 5 Y,
provided for any ¢ > 0, nhj&P (Y, = Y] <e) =1 (or equivalently 71113()10]3 ([Yn—=Y|>e¢) =
0). Convergence in probability is a stronger result than convergence in distribution. We
say a sequence of random variables Y; with CDFs Fy, converges in distribution to a random

variable Y, and denote it Y; = Y, if lim Fy, (y)=Fy(y) (or equivalently lim My, (t)=My(t)).
n—00 n—oo
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6.2 Theorems And Examples

Theorem 6.1. Weak Law Of Large Numbers (WLLN): For independent random vari-
ables with known mean, the sample mean converges probabilitistically to the mean as the
number of selections grows large. More formally, for a sequence of independent Y; with

E(Y;) = p, and V(Y;) = 02, ¥, = 1 3V, S p
=1

Proof. First compute the mean and variance of Y, using independence when needed.

- {i)-{Em) 45

i=1

1 2
_2.no' [ J—
n n

Next, apply Theorem 2.4 (Chebyshev’s Inequality, Page 7). Let ¢ > 0 be given. As
n — 00, We see:

Y,—p| >¢

5 ) VY, o

P

as desired. ]

Theorem 6.2. Continuity Theorems: For continuous g, if Y; converges to Y, then ¢(Y;)
converges to g(Y).

Theorem 6.3. Monte Carlo Integration: For definite integrals that necessitate numerical
methods, say fab g(x)dx = 1(g), then a technique to solve the integral is to generate n random
samples from a standard uniform, evaluate g at each observation, and find the average.

Proof. Let X; % U(a,b). Then fy(z) = ;= for z € {0,1} and zero otherwise. We have

E(g(x)) = ffg(x)ﬁ dr = ﬁf;g(x) dz and apply the WLLN to recall + 3" g(x;) =
=1
E(g(x)). Putting the two together, we observe ;- >~ g(z) 5 fabg(x) dx [
i=1

Theorem 6.4. Central Limit Theorem (CLT): For iid random samples, an approximat-
ing distribution for the sample mean is a standard normal. More formally, for iid Y; with

finite variance o2, :’/L:/% 4 N(,1) (or Y, ~ N (,u, "—:), or \/n <Yn — ,u) 4 N(0,02)).

Proof. We want to show that for iid Y; with mean p and variance o2, that i"—\;# converges in

o YL Yaeu
distribution to a standard normal. Rewrite ovn 88 V=

further write:

. To make it easier for later, we
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L 3 Z; t t t
M, o (t)=E (6@21 ) —E (e evi® . evi)
VPIRL
i=1
=E (eﬁ&) E <eﬁz2> K (eﬁz"> By independence
t n
=My | — By identical distributions
NZD

Recall that from the definition of MGF, we have:

M®(0) =E (Z%) Definition of MGF
E(Z°)=1E(Z')=0,E(Z*) =1 From how Z is defined

We next use Taylor’s Series to expand the MGF about zero:

o0 (n)
M, (t
M, (t/\/n) = E %\/ﬁ)(t/\/ﬁ - 0)" Definition of Taylor Expansion
n=0 )
t2
=140+ 2/'n + - Using above expectations
t2
=140+ 2/'n + Ry (t/v/n) Label the remainder

Note that the remainder goes to zero as n goes to infinity. Then Plugging this in from
the above, we have:

SN n (5 + By (t/vi)
lim M,(t/y/n) = lim | My (—)} = lim |1+
n—o0 n—oo L n n—o00 n
(5 +met/vin) ] 2k
= lim |1+ = lim |1+ %
n—o0 n n—oo n
_ et2/2 i

2 -
The MGF of a N(u,o?) is e*+(@)% so this proves Y, is approximated by a N(0,1). M
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