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1. Common Matrices 

 

 Below, we give examples of some common matrices (in the 3x3 case) so as to have a 

reference. 

 

 

Common in elimination:  

Identity, 𝐼 = [
1 0 0
0 1 0
0 0 1

].     Diagnol, 𝐷 = [
1 0 0
0 −1 0
0 0 3

].  

Elimination, 𝐸(2,1) = [
1 0 0
−2 1 0
0 0 1

].  Upper Triangular, 𝑈 = [
1 1 3
0 1 −7
0 0 1

].  

Lower Triangular, 𝐿 = [
1 0 0
3 1 0
0 −4 1

].  Permutation, 𝑃 = [
0 1 0
0 0 1
1 0 0

]. 

 

 

Common linear transformations: 

Shear, [
1 1 0
0 1 0
0 0 1

].       Rotation, [
0 0 −1
0 1 0
1 0 0

].  

Scale, [
2 0 0
0 2 0
0 0 2

].       Reflection, [
0 0 1
0 1 0
1 0 0

].  

Projection, [
1 0 0
0 1 0
0 0 0

].  

 

 

Common in statistics or other disciplines: 

Stochastic Matrices, [
0.05 0.2 0.5
0.4 0.2 0.5
0.55 0.6 0

]. Each entry in (𝑖, 𝑗) represents the probability of moving 

from state 𝑖 to state 𝑗. The sum of each column is 1, since the total probability of moving to any 

state from a state must be 1. The long-term or stationary state of the matrix is found by taking 

higher and higher powers of the matrix.  

 

Incidence matrices, [
−1 1 0
0 −1 1
−1 0 1

]. The matrix can represent a directed graph. Each column 

represents the nodes of the graph and each row represents the edges of the graph. The positive or 

negative sign reflects the direction of each edge; if it is leaving a node it is negative and if it is 

heading toward a node it is positive. 
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2. Elimination 

 

 We have already explored how matrices can represent linear transformations between 

vector spaces. Now, we would like to look at matrices throught the lense of solving a system of 

linear equations. We have 𝑚 equations and 𝑛 unknowns. In general, when the number of 

equations is greater than the number of unknowns (𝑚 > 𝑛), one would expect no solutions to 

exist. On the other hand, when the number of unknowns is greater than the number of equations 

(𝑛 > 𝑚), one would expect many solutions to exist. We will spend most of our time focusing on 

the instances where the number of equations is equal to the number of unknowns. Such cases 

either have a unique solution, no solution, or infinitely many solutions. 

 

 There is an algorithmic way to solve a system of linear equations, called Gaussian 

Elimlination. For illustrative purposes, we take a generalized three-by-three matrix 𝐴 =

[

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] where each entry in the matrix represents the coefficients in the linear 

combination. Our goal is to solve for the unknown 𝑥 = [

𝑥11
𝑥21
𝑥31
]. Our constraint is 𝑏 = [

𝑏11
𝑏21
𝑏31

], so the 

system is 𝐴𝑥 = 𝑏. If we form an augmented matrix 𝐴′ = [

𝑎11 𝑎12 𝑎13 𝑏11
𝑎21 𝑎22 𝑎23 𝑏21
𝑎31 𝑎32 𝑎33 𝑏31

], then 

permuting the rows or adding multiples of one row to another do not change the system--  

exchanging rows one and two is equivalent to solving [

𝑥21
𝑥11
𝑥31
] with [

𝑎21 𝑎22 𝑎23 𝑏21
𝑎11 𝑎12 𝑎13 𝑏11
𝑎31 𝑎32 𝑎33 𝑏31

] while 

subtracting row one from row two is equivalent to solving [

𝑥21
𝑥11
𝑥31

− 𝑥21] with 

[

𝑎11 𝑎12 𝑎13 𝑏11
𝑎21 − 𝑎11 𝑎22 − 𝑎12 𝑎23 − 𝑎13 𝑏21 − 𝑏11
𝑎31 𝑎32 𝑎33 𝑏31

]. The idea of elimination is to utilize these two 

operations to simplify the system as much as possible. Notice that if all but one of the 

coefficients are eliminated from the system in a given row, we are left with a coeficient, a 

constraint, and an unknown, and can just divide the constraint by the coefficient to find the 

unknown. To achieve this form, we put the matrix in upper-triangular form, or reduced 

echelon form with 0’s everywhere below the main diaganol. We call the enteries on the main 

diaganol the pivots of the matrix.  
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 First we add 
−𝑎21

𝑎11
 multiples of the first row from the second row to get 

[

𝑎11 𝑎12 𝑎13 𝑏11
𝑎21 𝑎22 𝑎23 𝑏21
𝑎31 𝑎32 𝑎33 𝑏31

]
𝑟2∗=𝑟2+(

−𝑎21
𝑎11

)𝑟1

→            [

𝑎11 𝑎12 𝑎13 𝑏11

0 [𝑎22 + (
−𝑎21𝑎12

𝑎11
)][𝑎23 + (

−𝑎21𝑎13

𝑎11
)][𝑏21 + (

−𝑎21𝑏11

𝑎11
)]

𝑎31 𝑎32 𝑎33 𝑏31

]. Next 

we make the second entry under the first pivot zero with 𝑟3 ∗= 𝑟3 + (
−𝑎31

𝑎11
) 𝑟1. Finally, we make the 

first entry under the second pivot zero with 𝑟3 ∗= 𝑟3 + (
−𝑎32

𝑎12
) 𝑟1. If at any time a pivot is zero, one can 

exchange the row with another if the matrix allows. We call this process forward elimination 

and the resultant matrix 𝑈 for upper triangular. Back-substitution yields the solution.  

 

 An example may help clarify. Consider the following: three people go to the market to 

buy fruit. The first person buys an apple, a banana, and 3 oranges for $8.50. The next person 

buys 3 apples, 2 bananas, and 2 oranges for $12. The final person buys 4 bananas and an orange 

for $9. The situation can be represented by a system of linear equations as shown below. The 

goal is to find, via matrix multiplication, the unit price of each fruit. 

 

𝑝𝑎 + 𝑝𝑏 + 3𝑝𝑜 = 8.5 

3𝑝𝑎 + 2𝑝𝑏 + 2𝑝𝑜 = 10 

4𝑝𝑏 + 𝑝𝑜 = 8 

 

So the known quantities can be assembled into a matrix, call it 𝐴. Likewise, the vector of unit 

prices can be assembled into a column matrix, call it �⃑�. The product, 𝐴�⃑�, will equal the matrix of 

total costs. We have the following: 

 

[
1 1 3
3 2 2
0 4 1

] [

𝑝𝑎
𝑝𝑏
𝑝𝑜
] = [

8.5
10
8
] 

 

To solve for the solution set, we use Gaussian Elimination, and thus create the augmented matrix 

below. 

[
1 1 3 8.5
3 2 2 10
0 4 1 8

] 

 

To follow along with the row operations, each step is shown along with the transformations of 

the matrix. Following convention, 𝑟𝑖 represents the 𝑖𝑡ℎ row and 𝑟𝑖
∗represents the new 𝑖𝑡ℎ column. 

 

[
1 1 3 8.5
3 2 2 10
0 4 1 8

]−3𝑟1 + 𝑟2 = 𝑟2
∗⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ [
1 1 3 8.5
0 −1 −7 −15.5
0 4 1 8

] 4𝑟2∗ + 𝑟3 = 𝑟3
∗⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ [
1 1 3 8.5
0 −1 −7 −15.5
0 0 −27 −54

] 
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With back-substitution, we see that −27𝑝𝑜 = −54, so 𝑝𝑜 = 2.  

We then see that −1𝑝𝑏 − 7𝑝𝑜 = −15.5, so −1𝑝𝑏 − 7(2) = −15.5, and thus 𝑝𝑏 = 1.5. 

Finally, we have 1𝑝𝑎 + 1𝑝𝑏 + 3𝑝𝑜 = 8.5, so 1𝑝𝑎 + 1(1.5) + 3(2) = 8.5, and thus 𝑝𝑎 = 1. 

 

 It took two operations bring 𝐴 = [
1 1 3
3 2 2
0 4 1

] to 𝑈 = [
1 1 3
0 −1 −7
0 0 −27

]. The operations that 

brought the matrix to 𝑈 can be represented with matrix multiplication. We call the matrices 

which perform these operation Elementary Matrices, and denote them 𝐸(𝑖,𝑗) where 𝑖 represents 

which row is changing and 𝑗 represents which row is being used in the elimination process. 

Sticking with the example, the first operation created a 0 in the 2nd row and 1st column of 𝐴. So 

we are looking for the 𝐸(2,1) matrix such that 𝐸(2,1)𝐴 = 𝐴1
∗  where 𝐴1

∗  represents the matrix A 

after the first row operation.  

 

𝐸(2,1) [
1 1 3
3 2 2
0 4 1

] = [
1 1 3
0 −1 −7
0 4 1

] 

 

 We should pause to consider the various ways in which one can imagine matrix 

multiplication. For any matrices 𝐴 and 𝐵 which permit 𝐴𝐵 = 𝐶, we can compute the exact value 

of a single entry in the 𝑛 × 𝑛 matrix 𝐶 as 𝐶𝑖𝑗 = ∑ 𝑎𝑖𝑘𝑏𝑘𝑗
𝑛
𝑘=1 , where 𝑎𝑖𝑘 is the element in the 𝑖𝑡ℎ 

row and 𝑘𝑡ℎ column of 𝐴 while 𝑏𝑖𝑘 is the element in the 𝑖𝑡ℎ row and 𝑘𝑡ℎ column of 𝐵. This is 

useful to find individual entries, but less natural than solving for whole rows or columns at a 

time. The column view of multiplication shows the 𝑗𝑡ℎ column of 𝐶 as a product of 𝐴 and a 

matrix of the 𝑗𝑡ℎ column of 𝐵, 𝐴𝐵𝑗 = 𝐶𝑗. In the case where 𝐵 is a column matrix, the resultant 

matrix is the linear combinations of the entries in 𝐵 and the columns in 𝐴. Likewise the row 

view of multiplication shows the 𝑖𝑡ℎ row of 𝐶 as a product of the 𝑖𝑡ℎ row of 𝐴 and the full matrix 

𝐵, 𝐴𝑖𝐵 = 𝐶𝑖.  

 

 Returning to the example, the matrix which allows the multiplication 𝐸(2,1)𝐴 = 𝐴1
∗  is the 

identity matrix in all entries but the 2nd row and first column. This entry is the multiple of row 1 

which is being added to row 2, in this case -3. So 𝐸(2,1) = [−
1 0 0
3 1 0
0 0 1

]. The same process holds 

in general-- 𝐸(𝑖,𝑗) is the identity matrix with the multiple of row 𝑗 that is added to row 𝑖 in the 

entry 𝐴𝑖𝑗. In our example, we had one more transformation, taking 𝐴1
∗  to 𝑈. So the goal is to 

solve for 𝐸(3,2) so that 𝐸(3,2)𝐴1
∗ = 𝑈. By the same process as described above, we get 𝐸(3,2) =

[
1 0 0
0 1 0
0 4 1

]. See that since 𝐸(2,1)𝐴 = 𝐴1
∗  and 𝐸(3,2)𝐴1

∗ = 𝑈, 𝐸(3,2)(𝐸(2,1)𝐴) = 𝑈. Since matrix 

multiplication is associative (but not commutative!) we have that (𝐸(3,2)𝐸(2,1))𝐴 = 𝑈. This is 
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convenient because we can represent the entire transformation from 𝐴 to 𝑈, the upper triangular, 

with one elimination matrix 𝐸. In the example, we see that 𝐸 = [
1 0 0
0 1 0
0 4 1

] [
1 0 0
−3 1 0
0 0 1

] =

[
1 0 0
−3 1 0
−12 4 1

], and can verify 𝐸𝐴 = 𝑈.  

 

 In what may first seem counter-intuitive, we would instead like to write 𝐴 as a product of 

matrices, 𝐴 = 𝐸−1𝑈. Inverting 𝐸 amounts to doing the steps of elimination in reverse. If 

𝐸(3,2)𝐸(2,1) = 𝐸, then surely 𝐸(2,1)
−1𝐸(3,2)

−1 = 𝐸−1 since 𝐸−1𝐸 = 𝐸−1(𝐸(3,2)𝐸(2,1)) =

(𝐸(2,1)
−1𝐸(3,2)

−1)(𝐸(3,2)𝐸(2,1)) = 𝐼.  In our case, we see that 𝐸(2,1)
−1 = [

1 0 0
3 1 0
0 0 1

] and 

𝐸(3,2)
−1 = [

1 0 0
0 1 0
0 −4 1

] so 𝐸−1 = [
1 0 0
3 1 0
0 0 1

] [
1 0 0
0 1 0
0 −4 1

] = [
1 0 0
3 1 0
0 −4 1

]. We call 𝐸−1 the 

matrix 𝐿 for lower-triangular. This matrix is interesting for two reasons. Most obviously, its 

shape is opposite 𝑈 with 0’s everywhere above the main diagonal. Secondarily, note that it 

completely contains the inverse of the multiples that brought 𝐴 to 𝑈! We see 3 in the second row 

and first column, and we subtracted 3 of the first row from the second to obtain a new second 

row. Likewise, we see -4 in the third row and second column, and we add four of the second row 

to the third to obtain a new third row. It is nice to see 𝐴 = [
1 1 3
3 2 2
0 4 1

] = 𝐿𝑈 =

[
1 0 0
3 1 0
0 −4 1

] [
1 1 3
0 −1 −7
0 0 −27

].  

 

 There is one major difference between 𝐿 and 𝑈 besides their obvious differences in 

makeup. See that the main diagonal of 𝐿 is filled with 1’s while the main diagonal of  𝑈 contains 

the pivots. If we write 𝑈 as a product of matrices, then we can pull the pivots out of 𝑈 and have 

1’s on the main diagonal of both 𝐿 and 𝑈. We remark without proof that the product of the pivots 

is the determinant of the matrix! Call the matrix of pivots 𝐷 for the diagonal matrix. Then we 

can write 𝐴 = [
1 0 0
3 1 0
0 −4 1

] [
1 0 0
0 −1 0
0 0 −27

] [
1 1 3
0 1 −7
0 0 1

] = 𝐿𝐷𝑈. This is just about optimal. 

However there is one issue with this factorization. Note that if a zero appears at any time in the 

pivot position, we cannot always eliminate the other entries below the pivot. There is an easy 

solution, which is to exchange the rows of the matrix prior to factoring. We are looking for the 

matrix 𝑃 (for permutation) which takes 𝐴 to 𝐴∗. We have 𝐴∗ in mind already, it is simply 𝐴 with 

a reordering of rows. The entries along each 𝑖𝑡ℎ row in 𝑃 are the multiples of each row in 𝐴 

which are added to achieve the 𝑖𝑡ℎ row of 𝐴∗. If we want the first row of 𝐴∗ to be the second row 
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of 𝐴, then the first row of 𝑃 will be < 0,1,… >; if we want the third row of 𝐴∗ to be the fourth 

row of 𝐴, then the third row of 𝑃 will be < 0,0,0,1,… >, etc. For a concrete example, imagine if 

our example originally had the third equation in place of the first. Then the coefficient matrix 

would be [
0 4 1
1 1 3
3 2 2

]. To get a non-zero first pivot, we could achieve our original matrix with 

𝑃 = [
0 1 0
0 0 1
1 0 0

], 𝑃𝐴 = [
0 1 0
0 0 1
1 0 0

] [
0 4 1
1 1 3
3 2 2

] = [
1 1 3
3 2 2
0 4 1

]. So the complete factorization is 

really 𝑃𝐴 = 𝐿𝐷𝑈, or 𝐴 = 𝑃−1𝐿𝐷𝑈.   

  

  The ideas in Gaussian Elimination can be used for more then just solving systems of 

linear equations. We have seen in previous papers that it is generally computationally difficult to 

solve for 𝐴−1 with something like Cramer’s Rule. Instead we may observe that since 𝐴𝐴−1 = 𝐼, 

if we perform operations on 𝐴 to turn it to 𝐼, then performing the same operations to 𝐼 should 

yield 𝐴−1. By bringing 𝐴 to 𝑈, 𝐼 goes to 𝐿−1 (recall 𝐿 is calculated as the inverse of the 

elimination steps, so the regular elimination steps must be 𝐿−1), then by bringing 𝑈 to 𝐼, 𝐿−1 goes 

to 𝐴−1. This is called the Gauss-Jordan Method, Which is a more strict form of elimination 

where all the values above and below the pivots are brought to zero and all the pivots are divided 

out to be 1.  

 

 Note that the columns of 𝐼 are combinations of 𝐴 and the columns in 𝐴−1. We can create 

an augmented matrix [𝐴𝐼] = [
1 1 3 1 0 0
3 2 2 0 1 0
0 4 1 0 0 1

]. We’ve already shown 𝐴 goes to 𝑈 with the 

operations −3𝑟1 + 𝑟2 = 𝑟2
∗ and 4𝑟2

∗ + 𝑟3 = 𝑟3
∗. We are left with [𝑈𝐿−1] =

[
1 1 3 1 0 0
0 −1 −7 −3 1 0
0 0 −27 −12 4 1

]. We now want to create zeros above the main diagonal. The 

operations 
−7

27
𝑟3 + 𝑟2 = 𝑟2

∗, 
3

27
𝑟3 + 𝑟1 = 𝑟1

∗, and 𝑟2 + 𝑟1
∗ = 𝑟1

∗∗ get us to the diagonal of pivots, 

then dividing the second row by −1 and the third row by −1/27 gets us to the identity. 

Performing these five operations in succession to 𝐿−1 we see [
1 0 0
−3 1 0
−12 4 1

] go to 

[
1 0 0

3/27 −1/27 −7/27
−12 4 1

], then [
−9/27 12/27 3/27
3/27 −1/27 −7/27
−12 4 1

], then [
−6/27 11/27 −4/27
3/27 −1/27 −7/27
−12 4 1

], 

and then scaling rows two and three finally see 𝐴−1 =
1

27
[
6 11 −4
−3 1 7
12 −4 −1

].  

 

  

 



Flaherty 8 

 

3. Fundamental Subspaces 
 

 Let a 𝑚× 𝑛 matrix 𝐴 represent the linear transformation 𝑇 between vector spaces 𝑉 and 

𝑊. A subset of a vector space that itself is a vector space is called a subspace. To check if a 

given space 𝑆 is a subspace of 𝑉, we must verify that the set is closed under addition and scalar 

multiplication as defined in 𝑉.    

 

 The Column Space of the transformation is the set of all linear combination of the 

columns in the matrix. The system 𝐴𝑥 = 𝑏 has solutions only when 𝑏 lies in the column space of 

𝐴; see that the column view of 𝐴𝑥 = 𝑏 is 𝑥1 [

𝑎11
⋮
𝑎𝑚1

] + 𝑥2 [

𝑎12
⋮
𝑎𝑚2

] + ⋯+ 𝑥𝑛 [

𝑎1𝑛
⋮
𝑎𝑚𝑛

] = [
𝑏1
⋮
𝑏𝑚

]. In this 

sense, the column space is the span of 𝑏. It is easy to see that this is a subspace. If two vectors, 

say 𝑥 and 𝑥∗, lie in the column space, then 𝐴𝑥 = 𝑏 and 𝐴𝑥∗ = 𝑏∗. So 𝑏 + 𝑏∗ must also be a 

combination of the columns, and surely 𝐴(𝑥 + 𝑥∗) = (𝑏 + 𝑏∗). Also if any vector is a 

combination of the columns, then any multiple of the vector is also a combination of the 

columns; 𝐴𝑥 = 𝑏 ⇒ 𝐴(𝑐𝑥) = 𝑐𝑏. We denote the column space 𝐶(𝐴).  

  

 The Row Space of the transformation is unsurprisingly the set of all linear combinations 

of the rows in a matrix. It is analogous to the column space of  𝐴𝑇 since the columns in 𝐴𝑇 are 

the rows in 𝐴. This is how we elect to refer to the subspace, and notion follows as such. We 

denote the column space of 𝐴𝑇 𝐶(𝐴𝑇).  

 

 The Kernel or Null Space of the transformation is ker(𝑇) ≔ {�⃑� ∈ 𝑉|𝑇(�⃑�) = 0}. 

Geometrically, the null space represents the vectors of 𝑉 which land on the origin after the linear 

transformation; they are the vectors 𝑥 such that 𝐴𝑥 = 0. or brevity, we can denote the null space 

of a linear transformation 𝑁(𝐴) from the matrix perspective. This is clearly a subspace; if 𝐴𝑥 =

0 and 𝐴𝑥∗ = 0, then 𝐴(𝑥 + 𝑥∗). Likewise any multiple of zero is also zero, so scalar 

multiplication holds and we know the null space is a subspace of 𝐴. This is the reason why the 

vectors which fit a constraint form a subspace only when the constraint is zero—for any other 

vector, scalar multiplication or vector addition will break down. F  

  

 The Right Null Space of the transformation is the null space of 𝐴𝑇, and is denoted 

𝑁(𝐴𝑇). 

 

 We now direct our attention to finding the dimension of each of the subspaces. The 

column space and null space are after different things—the column space is looking at the all the 

possible solution vectors 𝑏 in the system 𝐴𝑥 = 𝑏 while the null space is looking at the vectors 𝑥 

which yield the constraint of 0. Observe that the Column Space must be a subset of ℝ𝑚 since the 

scaled vectors adding to 𝑏 are of length 𝑚. On the other hand, the Null Space must be a subset of 
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ℝ𝑛 since we are solving for the 𝑛 × 1 matrix which is multiplied by the 𝑚 × 𝑛 matrix to arrive at 

the 𝑚 × 1 matrix of zeros. The same operations applied to the transpose of the matrix will of 

course have reverse results. As 𝐶(𝐴) ⊆ ℝ𝑚, 𝐶(𝐴𝑇) ⊆ ℝ𝑛, and since 𝑁(𝐴) ⊆ ℝ𝑛, 𝑁(𝐴𝑇) ⊆ ℝ𝑚. 

Group the subspaces together to see 𝐶(𝐴) ∪ 𝑁(𝐴𝑇) ⊆ ℝ𝑚 and 𝐶(𝐴𝑇) ∪ 𝑁(𝐴) ⊆ ℝ𝑛. We call the 

dimension of the null space the nullity, and the dimension of the column space the rank. When 

the matrix is put into echelon form, the rank is the number of pivots in the matrix.  

 

 The first part of the Fundamental Theorem of Linear Algebra deals with the dimension of 

each of the subspaces. Where 𝑟 is the number of pivots in the matrix, we can claim that 

dim(𝐶(𝐴) ⊆ ℝ𝑚) = 𝑟, dim(𝑁(𝐴𝑇) ⊆ ℝ𝑚) = 𝑚 − 𝑟, dim(𝐶(𝐴𝑇) ⊆ ℝ𝑛) = 𝑟, and 

dim(𝑁(𝐴) ⊆ ℝ𝑛) = 𝑛 − 𝑟.  

 

Pf: We aim to show that the dimension of the kernel of 𝑇 (called the nullity) plus the dimension 

of the image of 𝑇 (called the rank) is equal to the dimension of the domain 𝑉.  

 

 Choose a basis for the null space, say 〈𝑣1⃑⃑⃑⃑⃑, … , 𝑣𝑘⃑⃑⃑⃑⃑〉. Then by adding additional vectors to 

this basis, one forms a basis for the entire Vector Space 𝑉. Call the basis which does this 

〈𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , … , 𝑣𝑛⃑⃑⃑⃑⃑〉. Then the dimension of the Vector Space 𝑉 is 𝑛. We have that the nullity is 𝑘, so it 

suffices to show that the rank is 𝑟 = 𝑛 − 𝑘 (and so the nullity is 𝑘 = 𝑛 − 𝑟).  

 

 Consider the vectors 〈𝑇(𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ), … , 𝑇(𝑣𝑛⃑⃑⃑⃑⃑)〉 to be a basis for the column space. If this were 

the case, then the vectors would have to span the space. So choose an element 𝑇(𝑣) such that 𝑣 ∈

𝑉 (and then so that 𝑇(𝑣) is in the range space of the transformation). Since 𝑣 is an element of 𝑉, 

it can be written as a linear combination of the basis we defined for 𝑉 and constant terms 𝑐𝑖 ∈ ℝ, 

namely 𝑣 = 𝑐1 ∙ 𝑣1⃑⃑⃑⃑⃑ + ⋯+ 𝑐𝑘 ∙ 𝑣𝑘⃑⃑⃑⃑⃑ + 𝑐𝑘+1 ∙ 𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ + ⋯+ 𝑐𝑛 ∙ 𝑣𝑛⃑⃑⃑⃑⃑. So one can call the element of the 

range space 𝑇(𝑣) the expanded function 𝑇(𝑐1 ∙ 𝑣1⃑⃑⃑⃑⃑ + ⋯+ 𝑐𝑘 ∙ 𝑣𝑘⃑⃑⃑⃑⃑ + 𝑐𝑘+1 ∙ 𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ + ⋯+ 𝑐𝑛 ∙ 𝑣𝑛⃑⃑⃑⃑⃑). 

Since linear transformations are structure preserving, we can break up the function like so 

ℎ(𝑣) = 𝑐1𝐿(𝑣1⃑⃑⃑⃑⃑) + ⋯+ 𝑐𝑘𝐿(𝑣𝑘⃑⃑⃑⃑⃑) + 𝑐𝑘+1𝐿(𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ) + ⋯+ 𝑐𝑛𝐿(𝑣𝑛⃑⃑⃑⃑⃑).   

 

 Notice that 〈𝑣1⃑⃑⃑⃑⃑, … , 𝑣𝑘⃑⃑⃑⃑⃑〉 was previously defined to be the basis for the null space, the set of 

all elements in the domain which map to the 0 vector. So for all terms 𝑇(𝑣1⃑⃑⃑⃑⃑) + ⋯+ 𝑇(𝑣𝑘⃑⃑⃑⃑⃑), we 

have a value of 0, implying that ℎ(𝑣) can be written 𝑐𝑘+1𝑇(𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ) + ⋯+ 𝑐𝑛𝑇(𝑣𝑛⃑⃑⃑⃑⃑). In other 

words, the vectors 𝑣1⃑⃑⃑⃑⃑, … , 𝑣𝑘⃑⃑⃑⃑⃑ are not relevant in the span. Counting terms, we have that the rank 

of the transformation is 𝑛 − 𝑘 as desired. 

 

 We have shown that the basis 〈𝑇(𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ), … , 𝑇(𝑣𝑛⃑⃑⃑⃑⃑)〉 spans the range space. We must verify 

that the choices of the vectors in the basis are independent. In doing so, we must show that no 

non-trivial choices for the scalars in the linear combination yield a value of 0. We assume the 

opposite, that there exists 𝑐𝑖’s so 𝑐𝑘+1𝑇(𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ) + ⋯+ 𝑐𝑛𝑇(𝑣𝑛⃑⃑⃑⃑⃑) = 0. Like before, we leverage the 

fact that the transformation is structure preserving to rewrite this combination of terms as 
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𝑇(𝑐𝑘+1𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ + ⋯+ 𝑐𝑛𝑣𝑛⃑⃑⃑⃑⃑) = 0. Note that 𝑐𝑘+1𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ + ⋯+ 𝑐𝑛𝑣𝑛⃑⃑⃑⃑⃑ must, by definition, be a 

member of the null space. Since 〈𝑣1⃑⃑⃑⃑⃑, … , 𝑣𝑘⃑⃑⃑⃑⃑〉 is a basis for the null space, one can write 

𝑐𝑘+1𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ + ⋯+ 𝑐𝑛𝑣𝑛⃑⃑⃑⃑⃑ as a linear combination of scalars and 〈𝑣1⃑⃑⃑⃑⃑, … , 𝑣𝑘⃑⃑⃑⃑⃑〉. We have that 

𝑐𝑘+1𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ + ⋯+ 𝑐𝑛𝑣𝑛⃑⃑⃑⃑⃑ = 𝑐1 ∙ 𝑣1⃑⃑⃑⃑⃑ + ⋯+ 𝑐𝑘 ∙ 𝑣𝑘⃑⃑⃑⃑⃑. By subtracting the left side from the right, we see 

that (𝑐1 ∙ 𝑣1⃑⃑⃑⃑⃑ + ⋯+ 𝑐𝑘 ∙ 𝑣𝑘⃑⃑⃑⃑⃑) − (𝑐𝑘+1𝑣𝑘+1⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ + ⋯+ 𝑐𝑛𝑣𝑛⃑⃑⃑⃑⃑) = 0. But 〈𝑣1⃑⃑⃑⃑⃑, … , 𝑣𝑛⃑⃑⃑⃑⃑〉 was defined to be a 

basis for 𝑉, and such a collection of vectors only sum to zero when all scalars in the linear 

combination are 0. This is a contradiction to our assumption, so verifies independence. 

Analogous results hold for the transposes of the matrix. Q.E.D. 

 

 The next part of the Fundamental Theorem of Linear Algebra deals with the direction of 

the subspaces. We’ve seen before that vectors 𝑥 and 𝑦 are orthogonal if their dot product 𝑥𝑇𝑦 is 

zero. We call two subspaces orthogonal if every vector in one space is orthogonal to every vector 

in the other. Recall that the null space is defined to be all the solutions to 𝐴𝑥 = 0. Multiplying 

this out, we see [
⋯ 𝑟𝑜𝑤 1 ⋯
⋯ ⋮ ⋯
⋯ 𝑟𝑜𝑤 𝑚 ⋯

] [

𝑥1
⋮
𝑥𝑛
] = [

01
⋮
0𝑚

]. The first component of the zero vector is a 

linear combination of the first row of 𝐴 and the column matrix 𝑥. Likewise, the inner product of 

the second row of 𝐴 and 𝑥 is 0. So 𝑥 is orthogonal to every row in 𝐴; 𝑁(𝐴) ⊥ 𝐶(𝐴𝑇). We see the 

same result for the transpose, 𝑁(𝐴𝑇) ⊥ 𝐶(𝐴). In a roundabout way, we see the problem 𝐴𝑥 = 𝑏 

in a different light. We have already shown how 𝑏 must be a member of the column space to 

have a solution, and now we can say that 𝐴𝑥 = 𝑏 has a solution only when 𝑏 is orthogonal to 

every vector in the left null space.   

 

  

 


