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1. Vector Spaces 

 

 A set 𝐹 with two binary operations +: (ℝ × ℝ) → ℝ and ∙ ∶ (ℝ × ℝ) → ℝ satisfying the 

following criterial for all 𝑓1, 𝑓2, 𝑓3 ∈ 𝐹 is a field: 

 

a. Operations commute, i.e. 𝑓1 ∙ 𝑓2 = 𝑓2 ∙ 𝑓1 and 𝑓1 + 𝑓2 = 𝑓2 + 𝑓1 

b. Operations associate, i.e. 𝑓1 ∙ (𝑓2 ∙ 𝑓3) = (𝑓1 ∙ 𝑓2) ∙ 𝑓3 and . 𝑓1 + (𝑓2 + 𝑓3) = (𝑓1 + 𝑓2) + 𝑓3 

c. Multiplication distributes over addition, i.e. 𝑓1 ∙ (𝑓2 + 𝑓3) =  𝑓1 ∙ 𝑓2 + 𝑓1 ∙ 𝑓3 

d. Neutral elements exist, i.e. ∃0,1 ∈ 𝐹 with 0 ≠ 1 such that 𝑓 + 0 = 𝑓 and 1 ∙ 𝑓 = 𝑓 

e. Inverse elements exist, i.e. ∃(−𝑓), 𝑓−1 ∈ 𝐹 such that 𝑓 + (−𝑓) = 0 and 𝑓 ∙ 𝑓−1 = 1 for 𝑓 ≠ 0 

 

 We use symbols to preserve generality, though oftentimes regular addition and 

multiplication will be the operations. Fields can be finite (like ℤ5) or infinite (like the Real and 

Rational Numbers). Notably, the integers don’t form a field (there are no multiplicative 

inverses). In the broad topic of algebra, fields, along with groups and rings, are primary sources 

of interest in their own right. In this paper however, we introduce the concept of a field only in 

order to make clear the concept of a vector space. 

 

 A set 𝑉 is a vector space over the field 𝐹 provided there exists the two mappings 

(𝐹 × 𝑉) → 𝑉 (which permits scalar multiplication of all vectors in 𝑉 and is denoted 𝑓 ∙ �⃑�), and  

(𝑉 × 𝑉) → 𝑉, (which permits vector addition for all vectors in 𝑉 and is denoted �⃑� + �⃑⃑⃑�), that 

each satisfy the following criteria for all field elements 𝑓1, 𝑓2 ∈ 𝐹 and for all vectors �⃑�, �⃑⃑⃑� ∈ 𝑉: 

 

a. Multiplication associates, i.e. 𝑓1 ∙ (𝑓2 ∙ �⃑�) = (𝑓1 ∙ 𝑓2) ∙ �⃑�. 

b. Addition commutes, i.e. �⃑� + �⃑⃑⃑� = �⃑⃑⃑� + �⃑�.  

c. 𝑉 and 𝐹 have neutral elements, i.e. ∃0 ∈ 𝑉 and ∃1 ∈ 𝐹 so 0 + �⃑� =�⃑� and 1 ∙ �⃑� = �⃑�.  

d. 𝑉 has additive inverses, i.e. ∀�⃑� ∈ 𝑉, ∃(−�⃑�) ∈ 𝑉 so that �⃑� + (−�⃑�) = 0. 

e. Elements distribute, i.e. 𝑓1 ∙ (�⃑� + �⃑⃑⃑�) = 𝑓1 ∙ �⃑� + 𝑓1 ∙ �⃑⃑⃑� and (𝑓1 + 𝑓2) ∙ �⃑� = 𝑓1 ∙ �⃑� + 𝑓2 ∙ �⃑�. 

 

 By convention, members of the vector space are called vectors and members of the field 

are called scalars. Geometrically, vectors are added “by tail”: the vector resulting from �⃑� + �⃑⃑⃑� is 

a vector whose tail is the base of �⃑�, and whose head is at the point where �⃑⃑⃑� would be if it’s tail 

were at the head of �⃑�. Since the resultant vector is the same whether one “starts” at �⃑� or �⃑⃑⃑�, this is 

sometimes called the parallelogram rule. A Vector Space shares some of the criteria of a field, 

but notably lacks the necessity of a multiplication-like operation between elements within the 

vector space—this prevents the necessity of having a “1” element in the vector space, as well as 

commutative multiplication between vectors, among other properties. The essence of a vector 

means different things depending on the context (a physics student and statistics student both use 

the term to describe different things), but mathematicians generalize the concept to be applicable 

to a variety of situations.  
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2. Basis and Dimension 

 

 It is natural to think about how vectors interact with each other. A linear combination of 

𝑛 vectors {𝑣1⃑⃑⃑⃑⃑, … , 𝑣𝑛⃑⃑⃑⃑⃑} ∈ 𝑉 presents in the form 𝑓1 ∙ 𝑣1⃑⃑⃑⃑⃑ + ⋯ + 𝑓𝑛 ∙ 𝑣𝑛⃑⃑⃑⃑⃑ for generic field elements 

{𝑓1, … , 𝑓𝑛} ∈ 𝐹. The span of these vectors is the set of all their possible linear combinations; they 

span their vector space if for any �⃑� ∈ 𝑉, there exist scalars {𝑓1, … , 𝑓𝑛} ∈ 𝐹 so that �⃑� = 𝑓1 ∙ 𝑣1⃑⃑⃑⃑⃑ +

⋯ + 𝑓𝑛 ∙ 𝑣𝑛⃑⃑⃑⃑⃑.  

  

 It is just as natural to think about how to most succinctly represent space with these 

vectors. After all, all of the vectors in a vector space clearly span the whole space, but that is not 

very interesting. To get a better sense of which vectors “add” something to the span, we need the 

idea of independence. Geometrically, vectors whose tail sits on the origin are linearly 

independent if they lie on distinct lines. If some group of vectors lied on the same line with 

different magnitudes, then the same space that would be reached by the scaled version of one of 

the vectors could be reached by the scaled version of the other vector. So to say that vectors are 

linearly independent is to say that whenever a combination of the vectors results in the null 

vector, the scalars are all zero. Adding a vector that is dependent (i.e. a scaled version) of another 

that is already in the span does not expand the span.  

 

 A motivating question is how to generate a vector space with a linear combination of 

some vectors in the space. The minimum number of vectors which span a space is called the 

dimension of the space. This aligns with our conceptual understanding of dimension-- to 

describe a line, one just needs width. To describe a plane, one needs width and height. To 

describe a cube, one needs width, height, and depth. Of course, one benefit of linear algebra is its 

relevance to higher dimensional spaces that do not have easy geometric interpretations.  

  

 The actual vectors whose linear combinations compose the space are called a basis of the 

space. To be concrete, a set of linearly independent vectors {𝑣1⃑⃑⃑⃑⃑, … , 𝑣𝑛⃑⃑⃑⃑⃑} ∈ 𝑉 form a basis for the 

vector space 𝑉 if they span the space. In the plane, [
1
0

] and [
0
1

] are classic choices for the basis of 

the space (this choice is not at all unique). For simplicity, call [
1
0

] = 𝑖 and call [
0
1

] = 𝑗. Every 

horizontal vector is a scaled version of  𝑖, every vertical vector is a scaled version of 𝑗, and every 

other vector on the plane is a linear combination of two. In this view, the basis of a space serves 

as its “measuring stick”. Just as how a man’s weight could be described in both pounds and 

kilograms, a space can be described by different basis choices. Each choice is valid, but certain 

choices make more sense than others for a given situation (describing the weight of a truck in 

milligrams would probably be less valuable than describing it’s weight in tons). Extending the 

metaphor, scaled versions of a basis vector are like describing a person’s weight in kilograms 

and grams—they are different in terms of their magnitude but not in terms of their direction. 
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3. Linear Transformations  

 

 A linear transformation is a function between vector spaces 𝑇: 𝑉 → 𝑊 that preserves 

linearity; for any 𝑓1, 𝑓2 ∈ 𝐹1  and any vectors 𝑣1⃑⃑⃑⃑⃑, 𝑣2⃑⃑⃑⃑⃑ ∈ 𝑉 we have 𝑇(𝑓1𝑣1⃑⃑⃑⃑⃑ + 𝑓2𝑣2⃑⃑⃑⃑⃑) = 𝑓1 ∙ 𝑇(𝑣1⃑⃑⃑⃑⃑) +

𝑓2 ∙ 𝑇(𝑣2⃑⃑⃑⃑⃑). The range of this function (the span of the transformation) is called the column 

space, and the dimension of the column space is called the rank. A key takeaway from linear 

algebra is that any linear transformation between finite-dimensional vector spaces can be 

represented as a matrix if the bases of the two vector spaces are fixed. 

 

Pf: Consider the linear transformation 𝑇: 𝑉 → 𝑊, and fix {𝑣1⃑⃑⃑⃑⃑, … , 𝑣𝑛⃑⃑⃑⃑⃑} to be the basis of 𝑉 and 

{𝑤1⃑⃑ ⃑⃑ ⃑, … , 𝑤𝑚⃑⃑⃑⃑⃑⃑⃑} to be the basis of W. Then for all �⃑� ∈ 𝑉, there are unique scalars {𝑎1, … , 𝑎𝑛} ∈ 𝐹 so 

that �⃑� = 𝑎1 ∙ 𝑣1⃑⃑⃑⃑⃑ + ⋯ + 𝑎𝑛 ∙ 𝑣𝑛⃑⃑⃑⃑⃑. Likewise, for all �⃑� ∈ 𝑊, there are unique scalars {𝑏1, … , 𝑏𝑚} ∈ 𝐹 

so that �⃑� = 𝑏1 ∙ 𝑤1⃑⃑ ⃑⃑ ⃑ + ⋯ + 𝑏𝑚 ∙ 𝑤𝑚⃑⃑⃑⃑⃑⃑⃑.  

 

So for all �⃑� ∈ 𝑉, 𝑇(�⃑�) = 𝑇(𝑎1 ∙ 𝑣1⃑⃑⃑⃑⃑ + ⋯ + 𝑎𝑛 ∙ 𝑣𝑛⃑⃑⃑⃑⃑) = 𝑎1 ∙ 𝑇(𝑣1⃑⃑⃑⃑⃑) + ⋯ + 𝑎𝑛 ∙ 𝑇(𝑣𝑛⃑⃑⃑⃑⃑) by the 

definition of linear transformations (where each collection of {𝑎1, … , 𝑎𝑛} is of course dependent 

on the given �⃑� ∈ 𝑉). Further, for all basis vectors 𝑣𝑖⃑⃑⃑ ⃑ ∈ 𝑉, we have 𝑇(𝑣𝑖⃑⃑⃑ ⃑) ∈ 𝑊, so 𝑇(𝑣𝑖⃑⃑⃑ ⃑) can be 

represented as a unique linear combination of the scalars in 𝐹2 and the basis of 𝑊. 

 

To distinguish between the scalars of 𝑊 used to identify the basis vectors of 𝑉, we elect 

to use dual subscript. The first subscript refers to the relative position of the scalar in defining the 

element 𝑇(𝑣𝑖⃑⃑⃑ ⃑) ∈ 𝑊. The second subscript refers to the 𝑖𝑡ℎ basis vector of 𝑉 that the linear 

transformation is being performed on. So for a basis vector 𝑣𝑖⃑⃑⃑ ⃑ ∈ 𝑉, 𝑇(𝑣𝑖⃑⃑⃑ ⃑) = {𝑏1𝑖
, … , 𝑏𝑚𝑖

}
𝑇

. 

 

Recall that for a given �⃑� ∈ 𝑉, we have 𝑇(�⃑�) = 𝑎1 ∙ 𝑇(𝑣1⃑⃑⃑⃑⃑) + ⋯ + 𝑎𝑛 ∙ 𝑇(𝑣𝑛⃑⃑⃑⃑⃑). 

Specifically, 𝑇(�⃑�) = 𝑎1 ∙ (𝑏11
∙ 𝑤1⃑⃑ ⃑⃑ ⃑ + ⋯ + 𝑏𝑚1

∙ 𝑤𝑚⃑⃑⃑⃑⃑⃑⃑) + ⋯ + 𝑎𝑛 ∙ (𝑏1𝑛
∙ 𝑤1⃑⃑ ⃑⃑ ⃑ + ⋯ + 𝑏𝑚𝑛

∙ 𝑤𝑚⃑⃑⃑⃑⃑⃑⃑). It 

is important to acknowledge that the only part of this equality unique to the element the 

transformation is being performed on are the 𝑎𝑖’s; each 𝑏 is fixed based on the given basis vector 

in 𝑉, and each 𝑤𝑖⃑⃑⃑⃑⃑ is a basis for 𝑊. 

 

So 𝑇(�⃑�) = (𝑎1 ∙ 𝑏11
∙ 𝑤1⃑⃑ ⃑⃑ ⃑ + ⋯ + 𝑎1 ∙ 𝑏𝑚1

∙ 𝑤𝑚⃑⃑⃑⃑⃑⃑⃑) + ⋯ + (𝑎𝑛 ∙ 𝑏1𝑛
∙ 𝑤1⃑⃑ ⃑⃑ ⃑ + ⋯ + 𝑎𝑛 ∙ 𝑏𝑚𝑛

∙ 𝑤𝑚⃑⃑⃑⃑⃑⃑⃑).  

Grouping terms, 𝑇(�⃑�) = (𝑎1 ∙ 𝑏11
+ ⋯ + 𝑎𝑛 ∙ 𝑏1𝑛

) ∙ 𝑤1⃑⃑ ⃑⃑ ⃑ + ⋯ + (𝑎1 ∙ 𝑏𝑚1
+ ⋯ + 𝑎𝑛 ∙ 𝑏𝑚𝑛

) ∙ 𝑤𝑚⃑⃑⃑⃑⃑⃑⃑. 

 

To show that the linear transformation can be performed with matrix multiplication, we 

must show that the multiplication of a matrix with the vector representation of a given element in 

𝑉 leads to the vector representation of the transformed element in 𝑊. Consider the matrix where 
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the 𝑖𝑡ℎ column in the matrix is the vector of unique scalars for the 𝑖𝑡ℎ basis vector of 𝑉, 𝑇(𝑣𝑖⃑⃑⃑ ⃑). 

Call this fixed 𝑚 × 𝑛 matrix 𝐴. So 𝐴 = [

𝑏11
⋯ 𝑏1𝑛

⋮ ⋯ ⋮
𝑏𝑚1

⋯ 𝑏𝑚𝑛

].  

 

We showed above that the 𝑛 × 1 matrix (or column vector representation) of �⃑� is a set of 

scalars unique to the �⃑�, {𝑎1, … , 𝑎𝑛}𝑇. Call this matrix 𝑣. So 𝐴 ∙ 𝑣 is a 𝑚 × 1 matrix, call it 𝑤.  

Observe 𝑤 = {(𝑎1 ∙ 𝑏11
+ ⋯ + 𝑎𝑛 ∙ 𝑏1𝑛

), (… ), (𝑎1 ∙ 𝑏𝑚1
+ ⋯ + 𝑎𝑛 ∙ 𝑏𝑚𝑛

)}
𝑇
, precisely 

the unique matrix of scalars used to define 𝑇(�⃑�).       

  

Q.E.D 

 

Consider 𝑇: ℝ3 → ℝ2, 𝑇 (

𝑥1

𝑥2

𝑥3

) = (
𝑥1

𝑥2
). We showed previously that both ℝ3 and ℝ2 were vector 

spaces over the field of Real Numbers. 𝑇 is a linear transformation as for any real numbers 𝑟1 

and 𝑟2, and any vectors (𝑥1, 𝑥2, 𝑥3)𝑇 and (𝑥4, 𝑥5, 𝑥6)𝑇, we have 𝑇 (𝑟1 (

𝑥1

𝑥2

𝑥3

) + 𝑟2 (

𝑥4

𝑥5

𝑥6

)) =

  𝑇 (

𝑟1𝑥1 + 𝑟2𝑥4

𝑟1𝑥2 + 𝑟2𝑥5

𝑟1𝑥3 + 𝑟2𝑥6

) = (
𝑟1𝑥1 + 𝑟2𝑥4

𝑟1𝑥2 + 𝑟2𝑥5
) = 𝑟1 (

𝑥1

𝑥2
) + 𝑟2 (

𝑥3

𝑥4
) = 𝑟1𝑇 (

𝑥1

𝑥2

𝑥3

) + 𝑟2𝑇 (

𝑥4

𝑥5

𝑥6

).   

 

 Fix {(1,0,0), (0,1,0), (0,0,1)} to be the basis of ℝ3 and {(1,0), (0,1)} to be the basis for 

ℝ2—it should be immediately apparent that these sets can act as bases for the vector spaces in 

question. Then if the linear transformation is to be represented by a matrix, call it 𝐴, it must be a 

2 × 3 one, since any given vector �⃑� ∈ ℝ3 is represented by a unique 3 × 1 matrix of scalars that 

is dependent on the basis chosen for ℝ3. This allows for the product of the matrix representation 

of the linear transformation 𝐴 and the matrix representation of a given vector �⃑� to be 2 × 1. We 

would like to see this 2 × 1 matrix be the unique matrix of scalars representing the element 

𝑇(�⃑�). 

 

 If we let 𝐴 be the collection of transformed basis vectors for ℝ3, we see that the matrix is 

[
1 0 0
0 1 0

]. This becomes apparent when one breaks down the basis vectors of ℝ3. We see that 

 𝑇(𝑣1⃑⃑⃑⃑⃑) = 𝑇 (
1
0
0

) = (
1
0

), 𝑇(𝑣2⃑⃑⃑⃑⃑) = 𝑇 (
0
1
0

) = (
0
1

), and 𝑇(𝑣3⃑⃑⃑⃑⃑) = 𝑇 (
0
0
1

) = (
0
0

). 

 

 So select any vector in ℝ3. Preserving generality, we have �⃑� = (

𝑥1

𝑥2

𝑥3

).  
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Then 𝐴 ∙ �⃑� = [
1 0 0
0 1 0

] ∙ (

𝑥1

𝑥2

𝑥3

) = (
(1 ∙ 𝑥1) + (0 ∙ 𝑥2) + (0 ∙ 𝑥3)

(0 ∙ 𝑥1) + (1 ∙ 𝑥2) + (0 ∙ 𝑥3)
) = (

𝑥1

𝑥2
). We saw above that 

𝑇 (

𝑥1

𝑥2

𝑥3

) = (
𝑥1

𝑥2
), and thus have verified our results.   

 This example helps illustrate two properties of a linear transformation. First, each column 

in the 𝑚 × 𝑛 matrix represents where the basis vectors of the space are moved to. In the above 

example, [
1 0 0
0 1 0

] took the basis vector [
1
0
0

] to [
1
0

]; in a 2 × 2 case, [
3 0
2 −1

] takes the basis 

vector [
1
0

] to [
3
2

] and the basis vector [
0
1

] to [
0

−1
]. By following how the linear transformation 

changes the position of the basis vectors, we get a complete understanding of how the linear 

transformation changes the position of all vectors in the space; for a transformation between two-

dimensional spaces, the matrix [
𝑎 𝑏
𝑐 𝑑

] takes the vector [
𝑥
𝑦] to 𝑥 [

𝑎
𝑐

] + 𝑦 [
𝑏
𝑑

] = [
𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦

]. This 

explains why the identity matrix (usually denoted 𝐼), with 1’s on the upper-left to bottom-right 

diagonal and 0’s elsewhere, keeps any vector in it’s original position. 

 

 Next, we see that when 𝑚 < 𝑛 (when the number of rows is less than the number of 

columns, or when the amount of equations is less than the number of unknown variables), space 

becomes condensed— three space is reduced to a plane, a plane reduced to a line, a line reduced 

to a point, etc. Such a transformation is called a projection. In general, projections have many 

distinct inputs leading to the same output. In the opposite case, when 𝑚 > 𝑛, one would instead 

see many different outputs being mapped to by the same input. In general, for a 𝑚 × 𝑛 matrix 

representing the linear transformation 𝑇: 𝑉 → 𝑊, 𝑑𝑖𝑚(𝑉) = 𝑛 and 𝑑𝑖𝑚(𝑇(𝑉)) = 𝑚.  

  

 We can also combine transformations. Consider the transformation 𝑇: 𝑉 → 𝑊 and the 

transformation 𝐿: 𝑊 → 𝑍. Applying 𝐿 after first applying 𝑇 to a vector �⃑� would be equivalent to 

taking 𝐿(𝑇(�⃑�)). Let 𝐴 be the 𝑚 × 𝑛 matrix representing 𝑇 and let 𝐵 be a 𝑝 × 𝑚 matrix 

representing 𝐿. Then we can also represent the transformation as 𝐵𝐴, where the product, call it 

the 𝑝 × 𝑛 matrix 𝐶, will be a sum of the matrices achieved by multiplying 𝐵 and the first column 

of 𝐴, then 𝐵 and the second column of 𝐴, etc. This gives a geometric interpretation for why 

matrix multiplication is not commutative in general—the order of linear transformations matter 

(e.g. rotating then reflecting a plane in three space is not the same as reflecting the plane then 

rotating the plane).   
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4. Determinant  

 

 Geometrically, the absolute value of the determinant represents the scalar multiple of 

how the area or volume or hyper-volume between basis vectors change after a transformation. 

Since the transformation is linear, the area/volume/hyper-volume of any section in the vector 

space changes by the same multiple after the transformation. This helps explain why the 

determinant only applies to square matrices: for a 𝑚 × 𝑛 matrix with 𝑚 > 𝑛, space  “expands” 

from 𝑛 dimensions to 𝑚 dimensions while when 𝑚 < 𝑛, space “contracts” from 𝑚 dimensions 

to 𝑛 dimensions—in either case, what the determinant is measuring (the change in area or 

volume or hyper-volume) is illogical.  

 

 The above reasoning accurately describes the magnitude of a determinant, but it excludes 

one point about the direction of the determinant. The determinant of a linear transformation is 

negative when the basis vectors change their relative positions (if a basis vector was originally to 

the right of another basis vector and is now on the left for example).  

 

 Imagine the following scenarios for the vectors [
1
0

] and [
0
1

] to illustrate this point. The 

space expands horizontally by ℎ if [
1
0

] goes to [
ℎ
0

] with the transformation [
ℎ 0
0 1

] (see below). 

 

  
If both basis vectors grow by ℎ in the same direction, then the space expands by ℎ2. Fix the 

magnitudes of the basis vectors and the vector [
0
1

], then rotate the vector [
1
0

] counter-clockwise. 

This rotation decreases the determinant of the matrix (the area between the vectors) from 1 

(when the vectors are perpendicular, and the transformation is the identity matrix) to 
√2

2
 (when 

the vectors are at a 45-degree angle), to zero (when the vectors are aligned with the 
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transformation [
0 0
1 1

]), to -1 (when the vectors change position with the transformation 

[
−1 0
0 1

]).  

 

 A determinant is zero when the transformation brings space down a dimension (a two-

dimensional plane becomes a line on the plane, a three-dimensional cube becomes a plane in 

three-space, etc.) In the case of a zero determinant, the transformation is not linearly 

independent, and the matrix is singular, meaning it has no multiplicative inverse. The opposite 

of a singular matrix is an invertible matrix; 𝐴 is invertible if there exists a matrix 𝐴−1 such that 

𝐴𝐴−1 = 𝐼 = 𝐴−1𝐴. From this definition, it is clear that non-square matrices are not invertible 

(though may have either a left or right inverse), and that most square matrices will be invertible 

(unless a square matrix has zero determinant and so happens to condense space down a 

dimension, it will be invertible).    

 

 We can state a recursive computation for the determinant of a 𝑛 × 𝑛 matrix 𝐴 by 

acknowledging that the determinant of a 1 × 1 matrix is the element itself. For symbolic ease, 

we let 𝑎𝑖𝑗
 represent the element in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of 𝐴, and let 𝐴𝑖𝑗 represent the 

(𝑛 − 1) × (𝑛 − 1) matrix formed by taking all but the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of 𝐴. Then by 

fixing a row 𝑖, the determinant of 𝐴 is computed to be det (𝐴) = ∑ (−1)𝑖+𝑗𝑎𝑖𝑗det (𝐴𝑖𝑗)𝑛
𝑗=1 . Each 

matrix 𝐴𝑖𝑗 is called the minor of 𝑎𝑖𝑗, and the determinant of each the signed minors, 𝐴𝑖𝑗 =

(−1)𝑖+𝑗det (𝐴𝑖𝑗) is called the cofactor. A nice property of this definition is that it is generalized 

to be a linear combination of the cofactors of any row 𝑖 and row 𝑖 itself. This property could 

come in useful when a certain row has many zeros.  

 

 For thoroughness, we compute two examples: 

 For 𝐴 = [
𝑎 𝑏
𝑐 𝑑

], det(𝐴) = [(−1)2 ∙ 𝑎 ∙ det (𝑑)] + [(−1)3 ∙ 𝑏 ∙ det (𝑐)] = 𝑎𝑑 − 𝑏𝑐.  

For 𝐴 = [
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑔ℎ 𝑖

] , det(𝐴) = [(−1)2 ∙ 𝑎 ∙ det ([
𝑒𝑓
ℎ 𝑖

])] + [(−1)3 ∙ 𝑏 ∙ det ([
𝑑𝑓
𝑔 𝑖

])] +

[(−1)4 ∙ 𝑐 ∙ det ([
𝑑𝑒
𝑔ℎ])] = [𝑎 ∙ (𝑒𝑖 − 𝑓ℎ)] + [−𝑏 ∙ (𝑑𝑖 − 𝑓𝑔)] + [𝑐 ∙ (𝑑ℎ − 𝑒𝑔)] = 

𝑎𝑒𝑖 − 𝑎𝑓ℎ − 𝑏𝑑𝑖 + 𝑏𝑓𝑔 + 𝑐𝑑ℎ − 𝑐𝑒𝑔. We would arrive at the same answer by taking the second 

row: det(𝐴) = [(−1)3 ∙ 𝑑 ∙ det ([𝑏𝑐
ℎ𝑖

])] + [(−1)4 ∙ 𝑒 ∙ det ([
𝑎𝑐
𝑔𝑖])] + [(−1)5 ∙ 𝑓 ∙ det ([

𝑎𝑏
𝑔ℎ])] =

[−𝑑 ∙ (𝑏𝑖 − 𝑐ℎ)] + [𝑒 ∙ (𝑎𝑖 − 𝑐𝑔)] + [−𝑓 ∙ (𝑎ℎ − 𝑏𝑔)] 
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 So far we’ve talked about the geometric interpretation of the determinant and it’s 

calculation, but we’ve left out it’s defining properties. We mention them here for a matrix 𝐴: 

1) The determinant is linearly dependent on the rows. If 𝐵 is a matrix of zeros in all but one 

row, then det(𝐴 + 𝐵) = det(𝐴) + det (𝐵). If 𝐶 is a matrix of all ones but for one column 

of constants 𝑐, then d𝑒𝑡(𝐴𝐶) = 𝑐 ∙ 𝑑𝑒𝑡(𝐴). 

2) Exchanging two rows of a matrix switches the sign of the determinant.  

3) The determinant of the identity matrix is one. 

4) The determinant of the product is the product of the determinant, det(𝐴𝐵) =

det(𝐴)det (𝐵). 

5) The determinant of the transpose is the determinant of the matrix, det(𝐴𝑇) = det(𝐴). 

 

 The determinant function has more utility than just quantifying how linear 

transformations distort space; it can also be used to calculate the inverse of a matrix. To show 

this fact for an invertible 𝑛 × 𝑛 matrix 𝐴, we create a matrix 𝐷 that has the determinant of 𝐴 on 

the diagonal and zero’s elsewhere. In this sense the matrix is 𝐷 = 𝐼 ∙ det (𝐴). If 𝐷 was a product 

of two matrices, say 𝐷 = 𝐷1𝐷2, then each entry 𝑖, 𝑗 in 𝐷 would be a linear combination of the 𝑖𝑡ℎ 

row of 𝐷1 and the 𝑗𝑡ℎ column of 𝐷2. Every diagonal entry in 𝐷 (𝑑11, 𝑑22, 𝑑33, etc.) is the 

determinant of 𝐴, which we have defined to be ∑ (−1)𝑖+𝑗𝑎𝑖𝑗𝐴𝑖𝑗
𝑛
𝑗=1  for a fixed row 𝑖 of 𝐴. So 

every 𝑖𝑡ℎ row of 𝐷1 will be identical to the 𝑖𝑡ℎ row of 𝐴 (𝐷1 = 𝐴 because of the 𝑎𝑖𝑗 term in the 

summation), and every 𝑗𝑡ℎ column of 𝐷2 will be the 𝑗𝑡ℎ row of the cofactor matrix, or 

equivalently the 𝑗𝑡ℎ column of the transpose of the cofactor matrix (𝐷2 = 𝐴𝑐𝑜𝑓
𝑇  because of the 𝐴𝑖𝑗 

term in the summation). The transpose of the cofactor matrix is called the adjugate matrix. 

Recall that the entries to the cofactor/adjugate matrix come in the form 𝐴𝑖𝑗 representing the 

signed determinant of the matrix 𝐴 less its 𝑖𝑡ℎ row and 𝑗𝑡ℎ column. So we can write 𝐴𝐴𝑐𝑜𝑓
𝑇 =

𝐼 det(𝐴), then 𝐴−1𝐴𝐴𝑐𝑜𝑓
𝑇 = 𝐴−1𝐼 det(𝐴), and finally 

1

det(𝐴)
𝐴𝑐𝑜𝑓

𝑇 = 𝐴−1. In the 3 × 3 case, we 

have [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [

𝐴11 𝐴21 𝐴31

𝐴12 𝐴22 𝐴32

𝐴13 𝐴23 𝐴33

] = [
𝑑𝑒𝑡(𝐴) 0 0

0 𝑑𝑒𝑡(𝐴) 0
0 0 𝑑𝑒𝑡(𝐴)

]. 

 

 To see why every non-diagonal entry is zero, notice that the calculation for a non-

diagonal entry is essentially computing the determinant of a matrix that is the same as 𝐴 except 

for one row, which is a copy of another in the matrix. For example, the entry in the first row and 

second column of the above example is the sum-product 𝑎11𝐴21 + 𝑎12𝐴22 + 𝑎13𝐴23. This is the 

formula for the determinant of 𝐴 if 𝐴1𝑛 = 𝐴2𝑛, which can only be the case when the second row 

is an exact replica of the first. We showed that a defining characteristic of the determinant was 

that a row exchange flipped the sign of the determinant. So if one were to flip the first and 

second row of the example, then the sign of the determinant would need to change. But 

switching the rows would not change the matrix since the rows are identical, and the determinant 

of the matrix must be zero.  
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 Determinants can also be used as a tool to solve systems of linear equations. For 𝑛 linear 

equations and 𝑛 unknown variables, we can arrange an 𝑛 × 𝑛 matrix 𝐴 of all the coefficients, a 

column matrix 𝑥 of all the unknown variables, and a column matrix 𝑏 of the solutions. There are 

many methods for solving such systems (outlined later in the paper), but one way involves the 

use of determinants via Cramer’s Rule. 

 

 We saw 𝐴−1 =
1

det(𝐴)
𝐴𝑐𝑜𝑓

𝑇 , and so by multiplying each side by 𝑏 we can say 𝐴−1𝑏 =

1

det(𝐴)
𝐴𝑐𝑜𝑓

𝑇 𝑏. We are looking for the solution 𝑥 to 𝐴𝑥 = 𝑏, which is just 𝐴−1𝑏, so 𝑥 = 𝐴−1𝑏 =

1

det(𝐴)
𝐴𝑐𝑜𝑓

𝑇 𝑏. If 𝐵𝑗 is the matrix 𝐴 whose 𝑗𝑡ℎ column is replaced by 𝑏, then the 𝑗𝑡ℎ element in 𝑥 is 

𝑥𝑗 =
det(𝐵𝑗)

det(𝐴)
.  We have shown earlier that det(𝐴) = det (𝐴𝑇), and can then compute det(𝐵𝑗) as a 

linear combination of the 𝑗𝑡ℎ column of 𝐵𝑗 (which is 𝑏) and the cofactors of the 𝑗𝑡ℎ column, 

det(𝐵𝑗) = 𝑏1𝐴1𝑗 + ⋯ + 𝑏𝑛𝐴𝑛𝑗. This quantity is the 𝑗𝑡ℎ element of 𝐴𝑐𝑜𝑓
𝑇 𝑏, so we have shown that 

the 𝑗𝑡ℎ element of the solution is a ratio of the aforementioned determinants and are done. It 

should be mentioned that applying Cramer’s rule is generally a much slower and more 

computationally demanding way of solving systems of linear equations than other methods; its 

usefulness is its ability to find individual components to the solution relatively quickly.  
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5. Eigenvectors 

 

 So far, we have been interested in how linear transformations change vectors in a space. 

We know that given a basis for a 𝑛 dimensional vector space, a 𝑚 × 𝑛 matrix exists that 

represents the transformation of the space from ℝ𝑛 to ℝ𝑚.  When the linear transformation in 

question preserves the dimension of the space, the determinant represents the scaling factor of 

the generalized volume between any vectors in the space. The determinant was used to find the 

vector �⃑� that lands on a vector �⃑⃑� after the transformation 𝐴. This is a natural problem to solve 

given our interest in how linear transformations change space.  

 

 We now move our attention to another problem which seems less natural but is never the 

less equally important to 𝐴�⃑� = �⃑⃑�. This problem is finding the vectors that are only scaled in 

magnitude by a linear transformation; given a linear transformation 𝐴 we want to find the vectors 

�⃑� such that 𝐴�⃑� = 𝜆�⃑� for some scalar quantity 𝜆. Said a different way, we are looking for vectors 

that remain on their span after a linear transformation is applied. Unless the transformation is a 

multiple of the identity matrix, such vectors are rare or even non-existent (for instance we can 

immediately say that any linear transformation between different dimensions cannot possibly 

alter a vector only in terms of its magnitude). We call the vectors which possess this special 

property eigenvectors, and we call the scaling factor 𝜆 their eigenvalue.  

 

 Notice that we can write 𝐴�⃑� = 𝜆�⃑� as 𝐴�⃑� = 𝐼𝜆�⃑� (where 𝐼 has the same number of rows 

and columns as 𝐴) and then 𝐴�⃑� − 𝐼𝜆�⃑� = 0 and finally (𝐴 − 𝐼𝜆)�⃑� = 0. The matrix 𝐼𝜆 shifts the 

diaganol enteries of 𝐴 by 𝜆, and we are trying to find the non-trivial solutions to this equation 

(the zero vector is always a solution because the origin of a space remains stationary after a 

linear transformation). In general, the collection of vectors which land on the origin after a linear 

transformation are called null space of the transformation, and the null space of 𝐴 − 𝐼𝜆 is called 

the eigenspace. Only singular matrices have a non-trivial null space, so we need to find when the 

determinant of the transformation is zero; we are looking for the solutions to 𝑑𝑒𝑡(𝐴 − 𝐼𝜆) = 0. 

In this sense, we are first choosing the eigenvalues which allows 𝐴 − 𝐼𝜆 to have a non-trivial null 

space before solving for the null space.  

 

 Since there are 𝑛 diagonal entries effected by the eigenvalue, we know that the 

determinant of the eigenmatrix will be a 𝑛𝑡ℎ degree polynomial (called the characteristic 

polynomial) and thus have at most 𝑛 real roots. One can then solve for the roots to determine the 

values of the (at most) 𝑛 eigenvalues before plugging each value in to the matrix one-by-one and 

solving for the line of eigenvectors associated with its eigenvalue.  

 

 In order to understand a key application of eigenvectors, we must return again to the idea 

of basis vectors. Recall that vectors form a basis for a space provided they are linearly 

independent and span the space. Basis vectors are far from unique; for an 𝑛-dimensional space, 
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any 𝑛 linearly independent vectors will span the space. The important realization here is that for 

two distinct sets of basis vectors 〈𝑣1⃑⃑⃑⃑⃑, … , 𝑣𝑛⃑⃑⃑⃑⃑〉 and 〈𝑤1⃑⃑ ⃑⃑ ⃑, … , 𝑤𝑛⃑⃑⃑⃑⃑⃑ 〉 each basis vector in either set 

defines unit length in the given direction.  

  

 An example may help clarify. Consider the basis vectors [
1
0

] and [
0
1

]. Any vector in the 

space is a combination of the scaled versions of [
1
0

] and [
0
1

]. Now consider the vectors that 

would be described in the original basis as [
2
0

] and [
0
2

]. These vectors also span the space, but in 

light of this new basis they would be described as [
1
0

] and [
0
1

]. So the choice of basis is really a 

shift in perspective; the same vectors in a space may be described differently depending on the 

choice of basis. A natural question then becomes how we can translate between bases in a space. 

  

 We already have enough background to answer this question. Call 𝑏1 = 〈𝑣1⃑⃑⃑⃑⃑, … , 𝑣𝑛⃑⃑⃑⃑⃑〉 and   

𝑏2 = 〈𝑤1⃑⃑ ⃑⃑ ⃑, … , 𝑤𝑛⃑⃑⃑⃑⃑⃑ 〉. Then let 𝑆 be the linear transformation describing 𝑏2 in terms of 𝑏1. This is 

called the change of basis matrix. Each column 𝑖 in 𝑆 is then the column vector 𝑤𝑖⃑⃑⃑⃑⃑ in terms of 

𝑏1. Then given a vector �⃑� described by the basis vectors 𝑏2, we can describe �⃑� in terms of the 

basis vectors 𝑏1 by obtaining the product 𝑆�⃑�. Since 𝑆 translates vectors described in 𝑏2 to 𝑏1, 

𝑆−1 does the opposite and translates vectors described in 𝑏1 to vectors described in 𝑏2. Consider 

the same change of basis as described above,  𝑣1⃑⃑⃑⃑⃑ = [
1
0

] and 𝑣2⃑⃑⃑⃑⃑ = [
0
1

] to 𝑤1⃑⃑ ⃑⃑ ⃑ = [
2
0

] and 𝑤2⃑⃑⃑⃑⃑⃑ = [
0
2

] 

(from the perspective of the 𝑏1 basis). Then a vector [
1
2

] in 𝑏2 terms can be described in 𝑏1 terms 

by taking the product 𝑆�⃑� = [20
02

] [
1
2

] = 1 [
2
0

] + 2 [
0
2

] = [
2
4

]. We showed how to calculate an 

inverse matrix previously. 𝑆−1 =
1

det(𝑆)
𝑆𝑐𝑜𝑓

𝑇 =
1

4
[
𝑆11𝑆21

𝑆12𝑆22
] =

1

4
[20
02

] = [
1/2 0

0 1/2
]. So to desribe 

the vector [
2
4

] (from the perspective of 𝑏1) in terms of 𝑏2, we take [
1/2 0

0 1/2
] [

2
4

] = [
1
2

] and have 

succeeded in showing an example of our results.  

  

 Representing a linear transformation with a matrix is dependent on the basis chosen. Each 

𝑖𝑡ℎ column in the transformation matrix represents where the 𝑖𝑡ℎ basis vector lands after the 

transformation, so it is clear that the matrix representing a transformation in one basis will not 

always be the same as the matrix representing the same transformation in a different basis. We 

saw that given �⃑� in terms of 𝑏2, 𝑆�⃑� describes �⃑� in terms of 𝑏1. Then if 𝐴 is the transformation 

matrix in terms of 𝑏1, 𝐴𝑆�⃑� describes the transformed vector in terms of 𝑏1, and then 𝑆−1𝐴𝑆�⃑� 

describes the transformated vector in terms of 𝑏2. So we conclude that if a transformation 𝐴 is 

given in terms of 𝑏1 then 𝑆−1𝐴𝑆 describes the same transformation in terms of 𝑏2. In general, we 

say that 𝐴 is similar to 𝐵 if there exists an invertible matrix 𝑆 such that 𝐵 = 𝑆−1𝐴𝑆.  
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 Returning to the problem of diagonalization, if we let 𝑆 be the matrix of eigenvectors, 

appropriately called the eigenbasis matrix, then writing the transformation 𝐴 as Λ = 𝑆−1𝐴𝑆 is 

an equivelant transformation to 𝐴 from the perspective of basis vectors which lie on the 

eigenvectors. In doing so, we guarantee the transformation Λ, called the eigenvalue matrix, is 

diagonal, with each entry equal to the eigenvalues of the eigenvectors! To see this, let 𝐴 be 𝑛 × 𝑛 

with 𝑛 eigenvectors in the form 𝑥𝑖⃑⃑⃑⃑ = 〈𝑥𝑖1
, … , 𝑥𝑖𝑛

〉 and corresponding eigenvalues in the form 𝜆𝑖. 

Then 𝐴𝑆 = [

𝑎11
… 𝑎𝑛1

⋮ ⋱ ⋮
𝑎1𝑛

… 𝑎𝑛𝑛

] [

𝑥11
… 𝑥𝑛1

⋮ ⋱ ⋮
𝑥1𝑛

… 𝑥𝑛𝑛

] = [

𝜆1𝑥11
… 𝜆𝑛𝑥𝑛1

⋮ ⋱ ⋮
𝜆1𝑥1𝑛

… 𝜆𝑛𝑥𝑛𝑛

] by the definition of 

eigenvalue (recall that the initial problem was to find 𝐴�⃑� = 𝜆�⃑�, and by multiplying by columns, 

we see 𝐴 multiplying each eigenvector on the left). By the properties of matrix multiplication, we 

see that this is exactly SΛ, [

𝜆1𝑥11
… 𝜆𝑛𝑥𝑛1

⋮ ⋱ ⋮
𝜆1𝑥1𝑛

… 𝜆𝑛𝑥𝑛𝑛

] = [

𝑥11
… 𝑥𝑛1

⋮ ⋱ ⋮
𝑥1𝑛

… 𝑥𝑛𝑛

] [
𝜆1

⋱
𝜆𝑛

]. So we have 

𝐴𝑆 = SΛ, and then 𝑆−1𝐴𝑆 = Λ as required.  

 

 For a non-diagonal square matrix 𝐴, calculating 𝐴𝑛 for large 𝑛 is computationally 

difficult. It is almost always preferable to first transform 𝐴 to the eigenvalue matrix Λ, then 

calculate the 𝑛𝑡ℎ power as [
𝜆1

⋱
𝜆𝑛

]

𝑚

= [
𝜆1

𝑚

⋱
𝜆𝑛

𝑚
], then transform back to 𝐴. See 

Λ𝑛 = (𝑆−1𝐴𝑆)𝑛 = (𝑆−1𝐴𝑆)(𝑆−1𝐴𝑆) … (𝑆−1𝐴𝑆) = (𝑆−1)𝐴(𝑆𝑆−1)𝐴(𝑆𝑆−1) … 𝐴(𝑆) = 𝑆−1𝐴𝑛𝑆. 

We want 𝐴𝑛, so we take 𝑆Λ𝑛𝑆−1 = 𝑆(𝑆−1𝐴𝑛𝑆)𝑆−1 = (𝑆𝑆−1)𝐴𝑛(𝑆𝑆−1) = 𝐴𝑛. This is the 

general procedure for finding 𝐴𝑛: we first find the eigenvectors and eigenvalues, then form the 

eigenvalue matrix Λ,  then calculate Λ𝑛, and finally compute 𝑆Λ𝑛𝑆−1.  

 

Take the following example: [
7 2

−4 1
]

21

. This is a bonafide nightmare without the help of 

Wolfram Alpha or something similar. Instead we elect to use the method of diagonalization 

described above. First, we calculate the eigenvalues and eigenvectors: 

det ([
(7 − 𝜆) 2

−4 (1 − 𝜆)
]) = 𝜆2 − 8𝜆 + 15. The quadratic formula tells us the roots of the 

characteristic polynomial are 
−(−8)±√(−8)2−[4(1)(15)]

2(1)
=

8±2

2
; 𝜆1 = 5 and 𝜆2 = 3. Solving for the 

eigenvectors, we have   [
7 − (5) 2

−4 1 − (5)
] [

𝑥
𝑦] = [0

0
] so 𝑥 [ 2

−4
] + 𝑦 [ 2

−4
] = [0

0
] and 𝑣1⃑⃑⃑⃑⃑ = 𝑐 [ 1

−1
] 

for any scalar 𝑐. Further [
7 − (3) 2

−4 1 − (3)
] [

𝑥
𝑦] = [0

0
] so 𝑥 [ 4

−4
] + 𝑦 [ 2

−2
] = [0

0
] and 𝑣2⃑⃑⃑⃑⃑ = 𝑐 [ 1

−2
] 

for any scalar 𝑐. So we arrange 𝑣1⃑⃑⃑⃑⃑ and 𝑣2⃑⃑⃑⃑⃑ into a change of basis matrix, 𝑆 = [
1 1

−1 −2
]. We 



Flaherty 14 

 

know that 𝑆−1 =
1

det(𝑆)
𝑆𝑐𝑜𝑓

𝑇 =
1

−1
[
+𝑆11 −𝑆21

−𝑆12 +𝑆22
] =

1

−1
[
−2 −1
1 1

] = [
2 1

−1 −1
]. Then the 

eigenvalue matrix is 𝑆−1𝐴𝑆 = [
2 1

−1 −1
] [

7 2
−4 1

] [
1 1

−1 −2
] = [

5 0
0 3

]. We are interested in 

applying the transformation 21 times over, so the transformation is Λ21 = [521 0
0 321]. To write 

this in terms of the original basis, we transform back as SΛ21𝑆−1 =

[
1 1

−1 −2
] [521 0

0 321] [
2 1

−1 −1
] = [

[(2 ∙ 521) − 321] [521 − 321]

[(−2 ∙ 521) + (2 ∙ 321)] [−521 + (2 ∙ 321)]
]. The 

number of steps has been dramatically reduced—to calculate 𝐴21 by brute force, we’d need one 

computation for 𝐴2, another for 𝐴4, a third for 𝐴8, a fourth for 𝐴16, a fifth for 𝐴20, and a sixth for 

𝐴21. Here we just diagonalized and calculated an inverse before performing one set of matrix 

multiplication.  

    

 It should be noted that there are some transformations which do not permit such an easy 

process. Any rotation of space for example can not possibly have any real eigenvectors, as no 

vector in the original space remains on it’s span. And matrices with an algebraic multiplicity, 

that is those matrices whose characteristic polynomial permits the same eigenvalues, lack the 

nessecary eigenvectors to diaganolize. Take [
2 1
0 2

]. The eigenvalues solve (2 − 𝜆)(2 − 𝜆) = 0, 

so are 𝜆1 = 𝜆2 = 2. But then there is just one line of non-trivial solutions for [
0 1
0 0

] [
𝑥
𝑦] = [0

0
].    
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6. Orthogonality 

 

 The idea of orthogonality necessitates the idea of direction. A set of vectors are 

orthogonal if no component of one vector points in the same direction as another. On a plane, 

orthogonality is akin to perpendicularity; we know two vectors are orthogonal if there is a 90-

degree angle between them. We would like to find an explicit test for orthogonality in any 

dimension. To do so, we introduce the idea of a vector norm. “Norm” is practically synonymous 

with length and magnitude.  

 

 In one dimension, the norm is clear. It is simply the vector’s component. In two 

dimensions, the norm follows from the Pythagorean Theorem. The first component of the vector 

gives the length along one basis vector, and the second component gives the height along the 

second basis vector. The vector is calculated as the sum of the scaled magnitudes of each basis 

vector. In the illustration below, we see that a vector �⃑� = [
𝑥
𝑦] is the geometric sum of 𝑥 multiples 

of one basis vector and 𝑦 multiples of the other. The length of �⃑�, denoted ‖�⃑�‖, is known to be 

‖�⃑�‖2 = x2 + 𝑦2 (see the right triangle formed by �⃑�, �⃑�, and  �⃑�).  

 
 

 This is generalized in higher dimensions by repeating the process in two space. Imagine a 

vector in three-space [
𝑥
𝑦
𝑧

]. Then a box is formed with each basis vector giving length, width, and 

height, and the vector determining the endpoints in each direction. Applying the theorem to first 

the length and width, we have the squared length of the base of a triangle, x2 + 𝑦2, and the 

height of the box 𝑧. We can then reapply the theorem to see the length of the hypotenuse is 𝑥2 +

𝑦2 + 𝑧2. In 𝑛 dimensions, the same procedure is done: first we get length in one plane, then use 

that length and reapply the formula to get length in another plane, then use that length to 

calculate the length in another plane, etc. So for a vector �⃑�, ‖�⃑�‖2 = �⃑�𝑇�⃑�.  

 

 It is immediately clear how to test for orthogonality between individual vectors. They are 

orthogonal if and only if the square of their magnitudes is the squared norm of their difference;  

for vectors �⃑� and  �⃑�, we need  ‖�⃑�‖2 + ‖�⃑�‖2 = ‖�⃑� − �⃑�‖2. Expanding this equation, we have 

(𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2) + (𝑦1

2 + 𝑦2
2 + ⋯ + 𝑦𝑛

2) = (𝑥1 − 𝑦1)2 + ⋯ + (𝑥𝑛 − 𝑦𝑛)2. The right side is 
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(𝑥1
2 − 2𝑥1𝑦1 + 𝑦1

2) + ⋯ + (𝑥𝑛
2 − 2𝑥𝑛𝑦𝑛 + 𝑦𝑛

2). Grouping terms, this becomes 

(𝑥1
2 + ⋯ + 𝑥𝑛

2) + (𝑦1
2 + ⋯ + 𝑦𝑛

2) − 2(𝑥1𝑦1 + ⋯ + 𝑥𝑛𝑦𝑛). The left side of the equation cancels 

the first two parts of the right side and we are left with 0 = −2(𝑥1𝑦1 + ⋯ + 𝑥𝑛𝑦𝑛). This can 

only be the case when the sum (𝑥1𝑦1 + ⋯ + 𝑥𝑛𝑦𝑛), called the scalar product or the dot 

product and usually written 𝑥𝑇𝑦, is zero. When we choose basis vectors that are of equal length 

and orthogonal, we call them an orthonormal basis. When every vector in a subspace is 

orthogonal to every vector in another subspace, we can call the whole subspaces orthogonal. 

One of the most beautiful realizations in linear algebra deals with this concept, but we save 

specifics for another paper.  

 

 Geometrically, the dot product represents the projection of one vector onto the other. In 

the perpendicular case, this is easy to see: no component of one vector is in the same direction as 

the other, and so the dot product is zero. But we are not limited to just the perpendicular case. To 

think about other cases, we must first understand how to measure the angle between the vectors, 

and assume a basic understanding of trigonometry. Consider two-dimensional space. Fix a basis 

and let �⃑� = [
𝑥1

𝑦1
]  and �⃑� = [

𝑥2

𝑦2
] be two vectors. Let ∝ be the angle between �⃑� and the first basis 

vector and 𝛽 be the angle between �⃑� and the first basis vector (see below).  

 
 

 We are interested in finding 𝜃 = 𝛽−∝, the angle between the vectors, in terms of the 

vector norms and the scalar product. We know that the sine of an angle represents the ratio 

between the opposite side length and the hypotenuse. So sin(∝) =
𝑦1

‖�⃑�‖
 and sin(𝛽) =

𝑦2

‖�⃑⃑�‖
. 

Additionally, we know that the cosine of an angle represents the ratio between the adjacent side 

length and the hypotenuse. So cos(∝) =
𝑥1

‖�⃑�‖
  and cos(𝛽) =

𝑥2

‖�⃑⃑�‖
. Trigonometric identities tell us 

that cos(𝜃) = cos(𝛽−∝) = cos(𝛽) cos(∝) + sin(𝛽) sin(∝) =
𝑥2

‖�⃑⃑�‖
∙

𝑥1

‖�⃑�‖
+

𝑦2

‖�⃑⃑�‖
∙

𝑦1

‖�⃑�‖
=

𝑥2∙𝑥1+𝑦2∙𝑦1

‖�⃑⃑�‖∙‖�⃑�‖
. 
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Notice that the numerator is exactly the dot product of �⃑� and �⃑�. Then cos(𝜃) =
𝑥𝑇𝑦

‖�⃑⃑�‖∙‖�⃑�‖
, and we 

see the dot product 𝑥𝑇𝑦 = ‖�⃑�‖ ∙ ‖�⃑�‖ ∙ cos(𝜃).  

 

 The whole goal of this example was to get a sense of the dot product as the projection of 

one vector onto another. Suppose we want to project �⃑� onto �⃑�, finding the component of �⃑� that 

stretches in the direction of �⃑�. This entails finding the point 𝑝 on �⃑� that is closest to the head of 

�⃑�. Since the shortest distance between two points is a straight line, the line from �⃑� to 𝑝 must be 

perpendicular to �⃑�. As 𝑝 lies on �⃑�, it is some multiple 𝑐 of �⃑�, 𝑝 = 𝑐 ∙ �⃑�, and the problem becomes 

solving for 𝑐. The line between 𝑝 and �⃑� is perpendicular to �⃑�, so the dot product 𝑥𝑇(𝑦 − 𝑝) = 0. 

Substituting and expanding, we see 𝑥𝑇(𝑦 − 𝑐𝑥) = 𝑥𝑇𝑦 − 𝑥𝑇𝑐𝑥. The values 𝑥𝑇𝑦 and 𝑥𝑇𝑐𝑥 are 

scalars, and we can pull 𝑐 out on the right, so we are left with 𝑥𝑇𝑦 = 𝑐𝑥𝑇𝑥 and 
𝑥𝑇𝑦

𝑥𝑇𝑥
= 𝑐. Solving 

for the projection, we know 𝑝 = 𝑐 ∙ �⃑�, so 𝑝 =
𝑥𝑇𝑦

𝑥𝑇𝑥
∙ �⃑�, and 𝑝 =

𝑥𝑥𝑇𝑦

𝑥𝑇𝑥
 as 

𝑥𝑇𝑦

𝑥𝑇𝑥
 is a scalar. The 

numerator is the product of a matrix and a vector. Call the square matrix 𝑥𝑥𝑇 = 𝑃. Finally we 

have 𝑝 = (𝑃�⃑�)
1

𝑥𝑇𝑥
.  It’s unclear which form of the solution is easier to visualize: 𝑝 =

𝑥𝑇𝑦

𝑥𝑇𝑥
∙ �⃑� or 

𝑝 = (𝑃�⃑�)
1

𝑥𝑇𝑥
. The important thing is that we found what the solution is. Algebraically, the dot 

product is 𝑥𝑇𝑦. Geometrically, it is ‖�⃑�‖ ∙ ‖�⃑�‖ ∙ cos(𝜃), or from the view of a projection 

(𝑃�⃑�)
1

𝑥𝑇𝑥
.  

 

 We’ve seen how to transform between bases, and now direct our attention to creating 

orthonormal ones. We notice that since the dot product between orthonormal vectors is zero, for 

any vectors 𝑣𝑖⃑⃑⃑ ⃑, 𝑣𝑗⃑⃑⃑ ⃑ with 𝑖 ≠ 𝑗 it must be the case that 𝑣𝑖
𝑇𝑣𝑗 = 0. Further, when 𝑖 = 𝑗, 𝑣𝑖

𝑇𝑣𝑗 = 1, as 

the lengths are normalized. If we create a matrix whose columns are the orthonormal vectors in 

the space, call it 𝑄, then we see that 𝑄𝑇𝑄 = 𝐼, and so 𝑄𝑇 = 𝑄−1. Of course, 𝑄 can only be the 

matrix of basis vectors if its rank is the dimension of the space. Choosing an orthonormal basis is 

preferable many scenarios—in fact one might go so far as to say that if at all possible, 

transforming to an eigenbasis or orthonormal basis will always be preferable to a random 

selection. Whereas the strength of an eigenbasis laid in its ability to easily scale transformations, 

the strength of an orthonormal basis is its ability to maintain orthogonality—any vectors that are 

orthogonal prior to a transformation will also be orthogonal after the transformation. 

 

 The process of transforming to a normal basis is called Gram-Schmidt 

Orthogonalization. We have enough background to guess at this process. For ease we consider 

three basis vectors, but of course can apply the below steps to higher dimensional spaces. 

Suppose these three vectors are 𝑣1⃑⃑⃑⃑⃑, 𝑣2⃑⃑⃑⃑⃑, and 𝑣3⃑⃑⃑⃑⃑. We would like to transform these vectors so that 

they are orthonormal and there combinations still span the space. The first vector is easy—we 

just divide by its magnitude to normalize the length and force the other vectors to be orthogonal 
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to it. So 𝑞1⃑⃑ ⃑⃑ =
 𝑣1⃑⃑ ⃑⃑⃑

‖𝑣1⃑⃑ ⃑⃑⃑‖
. Now we consider 𝑣2⃑⃑⃑⃑⃑, and so must subtract off any component which is in the 

same direction as 𝑣1⃑⃑⃑⃑⃑. The projection of  𝑣2⃑⃑⃑⃑⃑ onto 𝑞1⃑⃑ ⃑⃑  is 
𝑞1

𝑇𝑣2

𝑞1
𝑇𝑞1

∙ 𝑞1⃑⃑ ⃑⃑ , but the denominator is one since 

𝑞1 is of unit length. The projection then simplifies to (𝑞1
𝑇𝑣2)𝑞1, which comes off  𝑣2⃑⃑⃑⃑⃑ and then is 

divided by it’s length. So 𝑞2⃑⃑⃑⃑⃑ =
 𝑣2−(𝑞1

𝑇𝑣2)𝑞1

‖𝑣2−(𝑞1
𝑇𝑣2)𝑞1‖

. Finally we consider 𝑣3⃑⃑⃑⃑⃑ and must subtract off any 

component in the same direction as either  𝑞1⃑⃑ ⃑⃑  or 𝑞2⃑⃑⃑⃑⃑. So 𝑞3⃑⃑⃑⃑⃑ =
 𝑣3−(𝑞1

𝑇𝑣3)𝑞1−(𝑞2
𝑇𝑣3)𝑞2

‖𝑣3−(𝑞1
𝑇𝑣3)𝑞1−(𝑞2

𝑇𝑣3)𝑞2‖
.     

 

  

  

  

 

 

 

 

 

 

 


