
Flaherty 1 

 

Exponent Rules: Let 𝑎, 𝑏, 𝑛, and 𝑚 be real numbers. Then we say 𝑎𝑛 = 𝑏 if 𝑛 multiples of 𝑎 is 

equal to the value 𝑏. For a positive value of 𝑛, 𝑎−𝑛 =
1

𝑎𝑛
 (𝑛 divisors of 𝑎). We call 𝑎 the base, 

and 𝑛 the exponent. From this definition, we see 𝑎1 = 𝑎. Without much additional work, we can 

deduce some more laws of exponentiation. 

1) 𝑎(𝑚+𝑛) = 𝑎𝑚𝑎𝑛, and 𝑎(𝑚−𝑛) =
𝑎𝑚

𝑎𝑛  ∀𝑚, 𝑛 ∈ ℝ. 

Pf: 𝑎𝑚+𝑛 is equivalent to 𝑎 multiplied by itself (𝑚 + 𝑛) times. Since multiplication is 

commutative, we can group these 𝑚 + 𝑛 terms how we’d like. So we can have 𝑚 multiples 

of 𝑎 multiplied by 𝑛 multiples of 𝑎, which is precisely what we wanted to show. As a 

consequence, we note that 𝑎(𝑚−𝑛) = 𝑎(𝑚+(−𝑛)) = 𝑎𝑚𝑎−𝑛 = 𝑎𝑚 1

𝑎𝑛
=

𝑎𝑚

𝑎𝑛
 

2) 𝑎0 = 1. 

Pf: From the first rule, we know that  𝑎𝑚+𝑛 = 𝑎𝑚𝑎𝑛 ∀𝑚, 𝑛 ∈ ℝ. Then 𝑎𝑚+0 = 𝑎𝑚𝑎0. 

Solving for 𝑎0, we have 𝑎0 =
𝑎𝑚+0

𝑎𝑚 = 1. 

3) 𝑎(𝑚𝑛) = (𝑎𝑚)𝑛, and 𝑎(𝑚
𝑛⁄ ) = (𝑎𝑚)

1
𝑛⁄  ∀𝑚, 𝑛 ∈ ℝ, 𝑛 ≠ 0. 

Pf: (𝑎𝑛)𝑚 is equivalent to 𝑚 multiples of 𝑎𝑛. Each 𝑎𝑛 has 𝑛 multiples of 𝑎, and there are 𝑚 

of these 𝑎𝑛’s, so by multiplying terms, we have 𝑚 ∙ 𝑛 multiples of 𝑎.  

4) (𝑎𝑏)𝑛 = 𝑎𝑛𝑏𝑛, and (
𝑎

𝑏
)

𝑛

=
𝑎𝑛

𝑏𝑛  

𝑃𝑓: Be careful with applying this to structures that aren’t commutative! 

(𝑎𝑏)𝑛 is equivalent to 𝑛 multiples of 𝑎𝑏. Since multiplication is commutative, this is the 

same thing as 𝑛 multiples of 𝑎 multiplied by 𝑛 multiples of 𝑏. As a consequence, we see that 

(
𝑎

𝑏
)

𝑛

= (𝑎 ∙
1

𝑏
)

𝑛

= 𝑎𝑛 1

𝑏𝑛 =
𝑎𝑛

𝑏𝑛 and are done.  
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Logarithm Rules: Let 𝑎, 𝑏, and 𝑛 be real numbers. Then the logarithm function can be denoted 

log𝑏 𝑥 = 𝑛 (“log base 𝑏 of 𝑛”) if 𝑏𝑛 = 𝑥. It should be clear that the domain of a logarithmic 

function is restricted to the positive non-zero reals (only a base of 0 can multiply by itself 𝑛 

times to arrive at 𝑥 = 0, but it does so for any 𝑛; only a negative base can multiply by itself 𝑛 

times to arrive at 𝑥 < 0, but then would be undefined for many values). By restricting the 

domain, we also restrict the base for the same rationale.  

 

1) log𝑏(𝑥 ∙ 𝑦) = log𝑏 𝑥 + log𝑏 𝑦, and log𝑏 (
𝑥

𝑦
) = log𝑏 𝑥 − log𝑏 𝑦 

Pf: Let log𝑏 𝑥 = 𝑚1 and log𝑏 𝑦 = 𝑚2, so that  𝑏𝑚1 = 𝑥 and 𝑏𝑚2 = 𝑦. 

For the first statement, see that 𝑥 ∙ 𝑦 = 𝑏𝑚1 ∙ 𝑏𝑚2 = 𝑏(𝑚1+𝑚1) from the first exponent 

rule. We are looking for the 𝑛 such that 𝑏𝑛 = 𝑥 ∙ 𝑦 = 𝑏(𝑚1+𝑚1), which is just 𝑚1 + 𝑚2 

and we are done.  

 

For the second statement, see that 
𝑥

𝑦
=

𝑏𝑚1

𝑏𝑚2
= 𝑏(𝑚1−𝑚2) from the first exponent rule. We 

are looking for the 𝑛 such that 𝑏𝑛 =
𝑥

𝑦
= 𝑏(𝑚1−𝑚1), which is just 𝑚1 − 𝑚2 and we are 

done. 

2) log𝑏(𝑥𝑦) = 𝑦 ∙ log𝑏 𝑥. 

Pf: Call log𝑏 𝑥 = 𝑚1, so 𝑏𝑚1 = 𝑥. Then 𝑥𝑦 = (𝑏𝑚1)𝑦 = 𝑏𝑚1𝑦 from the third exponent 

rule. We are looking for the value 𝑛 such that 𝑏𝑛 = 𝑥𝑦 = 𝑏𝑚1𝑦, which is just 𝑚1𝑦 =

𝑦 ∙ log𝑏 𝑥 and we are done. 

3) log𝑏(𝑥) =
log𝑎(𝑥)

log𝑎(𝑏)
. The change of base formula. 

Pf: Call log𝑏(𝑥) = 𝑛 so 𝑏𝑛 = 𝑥. Similarly, call log𝑎(𝑥) = 𝑚1 and log𝑎(𝑏) = 𝑚2 so that 

𝑎𝑚1 = 𝑥 and 𝑎𝑚2 = 𝑏. Substituting these values into the first equation, we have 

(𝑎𝑚2)𝑛 = 𝑎𝑚1. From the third exponent rule, this is equivalent to 𝑎𝑚2𝑛 = 𝑎𝑚1 , or 
𝑎𝑚2𝑛

𝑎𝑚1
= 1. From the first exponent rule, this is equivalent to 𝑎(𝑚2𝑛−𝑚1) = 1. From the 

second exponent rule, we know that 𝑎0 = 1, so have 𝑚2𝑛 − 𝑚1 = 0, or 𝑛 =
𝑚1

𝑚2
. 

Resubstituting for 𝑚1 and 𝑚2, we achieve our result. 
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Common and Natural Log 

 

There are two logarithmic functions that deserve singling out for the prevalence of their 

usage. The common log is that function with base 10. The natural log is that function 

with base 𝑒, Euler’s Number, and is denoted 𝑙𝑛.   

 

Since it’s standard to operate in base 10, the prevalence of the common log is 

unsurprising. To understand why the natural log is such an important function, one must 

first understand why 𝑒 is so special. 

 

Similar to how 𝜋 links all circles together as the ratio of their circumference to their 

diameter, and the basis of a vector space scales to create any vector in the space, 𝑒 links 

all continuously compounded growth or decay processes. More specifically, 𝑒 is the 

amount by which an original amount will grow or decay if one continuously compounds 

100% growth/unit period. It should be clear that the scaling factor of 100% growth is 

formulated as (1 +
1

𝑛
)

𝑛

, where 𝑛 is the number of times the growth is compounded in a 

unit period. Since 𝑒 represents continuous compounding, 𝑒 = lim
𝑛→∞

(1 +
1

𝑛
)

𝑛

≈ 2.718. 

This is admittedly a smaller quantity than one would likely expect. So, for example, 𝑎 ∙

𝑒𝑥 represents the amount that an initial value of 𝑎 will grow into if it has a growth rate of 

𝑟/unit period, compounded continuously for 𝑛 unit periods, where 𝑥 = 𝑟 ∙ 𝑛.  

 

From this perspective, the natural log function ln(𝑥) = 𝑦 gives the multiple of growth 

rate and time 𝑦 necessary for a continuously compounded unit value to reach 𝑥.  
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Classifying Common Single-Variable, Real-Valued Functions 

For a function 𝑓: ℝ → ℝ, 𝑥 → 𝑓(𝑥), where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ and 𝑛 ∈ ℕ, 𝑛 ≠ 0: 

 

1) Constant Function: 𝑓(𝑥) = 𝑐 

A horizontal line. 

2) Linear (Affine) Function: 𝑓(𝑥) = 𝑎 ∙ 𝑥 + 𝑐 

A straight line whose angle relative to the x-axis is determined by 𝑎, and whose y-

intercept, or more descriptively vertical shift relative to the origin, is determined by 𝑐.  

3) Power Function: 𝑓(𝑥) = 𝑎 ⋅ 𝑥𝑛 + 𝑐 

A curved line that is shaped like a parabola for even values of 𝑛, and “S” shaped for 

odd values of 𝑛. The width of the graph is determined by 𝑎. For even exponents, large 

positive values of 𝑎 create a thin upward opening parabolic shape and large negative 

values of 𝑎 have a thin downward opening parabolic shape. For odd exponents, large 

positive values of 𝑎 create a thin “S” shape while large negative values of 𝑎 create a 

thin backwards “S” shape. 𝑐 reflects the shift of the function from the origin. 

4) Polynomial Function: 𝑓(𝑥) = 𝑎𝑛1
∙ 𝑥𝑛1 + ⋯ + 𝑎𝑛2

∙ 𝑥𝑛2 + ⋯ + 𝑐 

The first term determines the general shape of the function. The highest value of 𝑛 is 

called the degree of the polynomial.  

5) Exponential Function: 𝑓(𝑥) = 𝑎 ∙ 𝑛(𝑏𝑥+𝑐1) + 𝑐2 

Characterized by rapid growth or decay. The value of 𝑏 determines the width of the 

function—large magnitudes of 𝑏 result in a function whose growth/decay near 0 is 

more extreme than lesser magnitudes of 𝑏. Values of 𝑐1 translate the graph 𝑐1 units to 

the left, while values of 𝑐2 translate the graph 𝑐2 units up. Simply changing the value 

of 𝑏 to – 𝑏 results in a reflection of the function across the y-axis. Simply changing 

the value of 𝑎 to – 𝑎 results in a reflection of the function across the x-axis. Values of 

𝑎 determine whether the function is experiencing exponential growth or decay. A 

positive 𝑎 and 𝑏 results in a graph that is exponentially increasing from a horizontal 

asymptote of 𝑐2. Positive values of 𝑎 and negative values of 𝑏 results in a graph that 

is exponentially decreasing from a value of positive infinity to a horizontal asymptote 

of 𝑐2. Negative values of 𝑎 and positive values of 𝑏 results in a graph that is 

exponentially decreasing from a horizontal asymptote of 𝑐2. Negative values of both 

𝑎 and 𝑏 results in a graph that is exponentially increasing from negative infinity to a 

horizontal asymptote of 𝑐2. 

6) Logarithmic Function: 𝑓(𝑥) = 𝑎 ∙ log𝑏(𝑛𝑥 + 𝑐) + 𝑑 

The behavior of the logarithm function is of course inverse to that of the exponential 

function. As previously discussed, the values of the function are only defined for 

when 𝑛𝑥 + 𝑐 > 0 and 𝑏 > 0. Values of 𝑎 determine the direction the function opens 

(positive values result in a function that is positively increasing toward an asymptotes 

while negative values result in a function that is decreasing toward an asymptote). 

Values of 𝑛 determine the magnitude the function achieves from 𝑑 near 0.  
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Note that every constant function is an affine function, every affine function a power 

function, and every power function a polynomial function. Of course, the reverse 

logic does not apply. This is important to recognize for future discussions of 

derivatives and their computation.  

 


